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ABSTRACT
GPS is one of the most widely used wireless systems. A GPS re-
ceiver has to lock on the satellite signals to calculate its position.
The process of locking on the satellites is quite costly and requires
hundreds of millions of hardware multiplications, leading to high
power consumption. The fastest known algorithm for this prob-
lem is based on the Fourier transform and has a complexity of
O(n logn), wheren is the number of signal samples.

This paper presents the fastest GPS locking algorithm to date.
The algorithm reduces the locking complexity toO(n

√
logn). Fur-

ther, if the SNR is above a threshold, the algorithm becomes lin-
ear, i.e.,O(n). Our algorithm builds on recent developments in the
growing area of sparse recovery. It exploits the sparse nature of
the synchronization problem, where only the correct alignment be-
tween the received GPS signal and the satellite code causes their
cross-correlation to spike.

We further show that the theoretical gain translates into empir-
ical gains for GPS receivers. Specifically, we built a prototype of
the design using software radios and tested it on two GPS datasets
collected in the US and Europe. The results show that the new al-
gorithm reduces the median number of multiplications by 2.2× in
comparison to the state of the art design, for real GPS signals.

Categories and Subject DescriptorsC.2 [Computer Sys-
tems Organization]: Computer-Communications Networks

General Terms Algorithms, Design, Performance, Theory

Keywords GPS, Synchronization, Sparse Fourier Transform

1. INTRODUCTION
The global positioning system (GPS) is one of the most perva-

sive wireless technologies. It is incorporated in more than one bil-
lion smartphones world-wide [17], and embedded in a wide variety
of devices, including personal navigation systems [37], sensors [5],
digital cameras [26], and even under-the-skin bio-chips [13]. The
key functionality of a GPS receiver is to calculate a position, called
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a fix. Computing a fix involves locking on the GPS satellite sig-
nals and decoding satellite orbit and time data. Most GPS receivers,
however, are embedded with some other radio (e.g., WiFi, cellu-
lar, or ZigBee) and, hence, can download the content of the GPS
signal from assisted GPS (A-GPS) servers instead of decoding it
from the satellite signals [19].1 With assisted GPS used widely in
phones and other GPS-capable devices [9], the bulk of what a GPS
receiver does is to lock on the satellite signal (i.e., synchronize with
it). This allows the receiver to calculate the sub-millisecond syn-
chronization delay necessary for computing its position [10]. The
importance of locking is further emphasized by the fact that current
GPS receivers are typically duty-cycled [34, 2]; hence, they need
to re-synchronize with the satellite signals regularly. Synchronizing
with the satellite signal, however, is a costly process that requires
tens of millions to a few billion digital multiplications [36]. Many
GPS-enabled devices (e.g., mobile phones, sensors, etc.) have strict
power limitations and would significantly benefit from reducing the
complexity of this process.

In this paper, we aim to reduce the cost of synchronizing with
weak signals like GPS. At a high level, GPS synchronization works
as follows: each satellite is assigned a CDMA code. For each satel-
lite, the receiver needs to align the corresponding CDMA code with
the received signal. The process is complicated because GPS sig-
nals are very weak (about 20 dBbelow the noise level [31]). To
find the right alignment of each satellite, a GPS receiver conducts
a search process. It computes the correlation of the CDMA code
with the received signal for all possible shifts of the code with re-
spect to the signal. The correct shift is the one that maximizes the
correlation.

So, how does a GPS receiver compute all these shifted correla-
tions? The traditional approachconvolves the received signal with
the CDMA code of each satellite in the time domain. The correct
alignment corresponds to the one that maximizes this convolution.
This approach has a computational complexity ofO(n2), wheren
is the number of samples.2 More recent GPS receivers lock on the
satellite using frequency domain computation. This approach lever-

1The data includes almanac, ephemeris, reference time. AGPS may
also provide other optional assistance data [19].
2The CDMA code consists of 1023 chips transmitted at 1.023 MHz.
For a GPS receiver that samples at 5 MHz, the computational com-
plexity of the shifted correlation is(1023× 5/1.023)2, which is
about 25 million multiplications of complex signal samples. The
GPS receiver has to repeat this process for multiple satellites (be-
tween 4 to 12 satellites) and multiple Doppler shifts (between 21
to 41 shifts) for each satellite, which brings the number of multi-
plications to over a billion. Further, correlating with one block of
the signal may not be sufficient. For weak signals, the receiver may
need to repeat this process and sum up the output [20].
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Figure 1—The steps performed by the FFT-based synchronization algorithm. The algorithm multiplies the FFTs of the received signal
with the FFT of the code, and takes the IFFT of the resulting signal. The output of the IFFT spikes at the shift that correctly synchronizes the
code with the satellite signal.

ages the fact that convolution in the time domain corresponds to
multiplication in the frequency domain. It proceeds in the follow-
ing three steps, shown in Fig. 1: 1) The receiver takes the FFT of
the received signal; 2) It multiplies the output of this Fourier trans-
form by the FFT of the CDMA code; and 3) It performs the inverse
FFT on the resulting signal. This 3-step process is mathematically
equivalent to convolving the signal with the code; thus, the output
of the inverse FFT will spike at the correct shift that synchronizes
the code with the received signal, as shown in Fig. 1d. The compu-
tational complexity of this approach isO(n logn). For the past two
decades, this has been the algorithm with the lowest computational
complexity for synchronizing a GPS receiver [36].

This paper introduces the lowest complexity GPS synchroniza-
tion algorithm to date. Our synchronization algorithm is based on
the following observations:

• First, we note that since the output of the synchronization process
has a single major spike at the correct shift, as shown in Fig. 1d,
the inverse FFT is very sparse. The problem of sparse FFT has
recently received much attention in the computer science theory
community, which resulted in new algorithms that can compute
the FFT (or inverse FFT) of a sparse signal in sublinear time [14,
15, 11].3 We build on these advances to significantly reduce the
runtime of the GPS synchronization algorithm. However, exist-
ing sparse FFT algorithms use relatively complex filters (e.g.,
Dirichlet [11], Gaussian [14], or Dolph-Chebyshev filters [15])
to deal with the interaction of multiple potential spikes at the
output of the transform. In contrast, we exploit the fact that the
synchronization problem produces only one spike, and design a
simple sublinear algorithm that uses only aliasing to filter the sig-
nal. This allows us to reduce the complexity of the IFFT step in
Fig. 1d to sublinear time.

• Although the output of the inverse FFT is sparse and can be
quickly computed, the GPS signal in the frequency domain is
not sparse (Fig. 1b) and, hence, the runtime of the forward FFT
cannot be reduced by applying a sparse transform. Thus, simply
using sparse inverse FFT does not reduce the overall complexity
of the problem (which is stillO(n logn) due to the forward FFT).
To address this issue, we note that the FFT in Fig. 1b is just an
intermediate step that will be used as an input to the sparse IFFT.
Since sparse IFFT algorithms (including ours) operate only on a
subset of their input signal, we do not need to compute the values

3Sparse FFT algorithms are designed for the case where the output
of the Fourier Transform contains only a small number of spikes.
They are applicable to both sparse FFTs and sparse IFFTs. For a
more detailed description see section 3.

of all frequencies at the output of the forward FFT. We leverage
this property to compute only a subset of the frequencies and re-
duce the complexity of the FFT step.

We provide an algorithm that, for any SNR, is as accurate as the
original FFT-based (or convolution-based) algorithm, but reduces
the computational complexity fromO(n logn) to O(n

√
logn). Fur-

ther, when the noise in the received signal can be bounded by
O(n/ log2 n), we prove that the same algorithm has a linear com-
plexity, i.e.,O(n).4

We implement our design and test it on two datasets of GPS sig-
nals: We collected the first dataset in the US using software radios.
The second dataset was collected in Europe.5 The datasets cover
both urban and suburbun areas. We compare our design against an
FFT-based synchronization algorithm. Our design reduces the num-
ber of multiplications for detecting the correct shift by a median of
2.2×. Since a large fraction of GPS power is consumed by the syn-
chronization process (30% [28] to 75% [29] depending on the re-
quired accuracy), we expect the new design to produce a significant
reduction in GPS power consumption.

Contributions: This paper makes algorithmic and system contri-
butions, which can be summarized as follows:

• The paper presents the fastest algorithm to date for synchronizing
GPS receivers with satellite signals. The algorithm has multiple
features: 1) It is adaptive, i.e., it can finish faster if the SNR is
higher; 2) it continues to work at very low SNRs; and 3) it is
general, i.e., it can be used to synchronize any signal with a ran-
dom (or pseudo random) code.

• The paper provides an implementation and an empirical eval-
uation on real GPS signals, demonstrating that the algorithmic
gains translate into a significant reduction in the number of oper-
ations performed by a GPS receiver.

2. GPS PRIMER
The key functionality of a GPS receiver is to calculate its position

using the signal it receives from the GPS satellites. To do so, the re-
ceiver computes the time needed for the signal to travel from each
satellite to itself. It then multiplies the computed time by the speed
4Note thatn is not a constant and varies across GPS receivers.
Specifically, different receivers sample the GPS signal at different
rates, hence obtaining a different number of samples per codeword.
For example, for a receiver whose sampling rate is 5MHz,n=5000,
whereas for a 4MHz receiver,n=4000.
5The Europe dataset is courtesy of the GNSS-SDR team [8]. at the
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC).
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Figure 2—Trilateration: After determining the distance to differ-
ent satellites, the receiver can draw spheres centered at each of
the satellites and whose radii are the respective distances. These
spheres should intersect at the receiver’s position. A GPS receiver
needs four satellites to uniquely determine its position [20]. Extra
satellites can be used to correct for the lack of very tight synchro-
nization between the receiver’s clock and those of the satellites.

of light to obtain its distance from each satellite. As a result, the
receiver knows that it lies on a sphere centered at that satellite and
whose radius is the computed distance. It then determines its po-
sition as the intersection of several such spheres through a method
called trilateration [20] shown in Figure 2.

But how does the receiver compute the propagation time from the
satellites? The propagation time is obtained using a synchroniza-
tion algorithm that allows the device to lock on the received signal.
Specifically, each satellite has its own CDMA code, called the C/A
code, which consists of 1023 chips [20]. Assuming the receiver’s
and satellites’ clocks are perfectly synchronized, a GPS receiver
generates the satellites’ codes at the same time as the satellites. Due
to propagation delay, however, the signal arrives in a shifted version
at the receiver by exactly the amount of time it took the signal to
travel from the satellite. By correlating with shifted versions of the
satellite’s code, the receiver calculates the propagation time as the
shift at which the correlation spikes [36]. In practice, the receiver’s
clock is not fully synchronized with that of the satellites; this, how-
ever, can be compensated for by increasing the number of satellites
used in the trilateration process.6

The motion of the satellites introduces a Doppler shift in the
received signal. The signal does not correlate with the C/A code
unless the Doppler shift is corrected. To deal with this issue, a
GPS device typically performs a 2-dimensional search on the re-
ceived signal [20]: one for time (code shifts), and one for Doppler
shifts. Specifically, the receiver tries all possible code shifts, and 41
equally spaced Doppler shifts within +/-10 kHz of the center fre-
quency [36], as shown in Fig. 3. Finally, the GPS satellites repeat
the code 20 times for each data bit to enable the GPS receiver to
decode very weak signals. The receiver tries to use one code repeti-
tion to synchronize. However, if the signal is too weak, the receiver
repeats the 2D-search for multiple codes and sums the result [20].

6All GPS satellites use atomic clocks and are fully synchronized
with each other [20]. Hence, a GPS receiver will have the same
clock skew with respect to all satellites and all the estimated prop-
agation delays will have the same errorǫ. However, trilateration
needs only 4 satellites to estimate the position and thus extra satel-
lites can be used to to estimate and correctǫ.
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Figure 3—2D search for correlation.The plot shows the result of
correlating with a C/A code for a satellite whose signal is present
in the received signal. On the x-axis, we search 4000 different code
shifts and on the y-axis 21 different Doppler shifts.

3. QuickSync
We describe QuickSync, a synchronization algorithm for GPS re-

ceivers. The algorithm works in the frequency domain similar to the
FFT-based algorithm described in §1. QuickSync, however, exploits
the sparse nature of the synchronization problem, where only the
correct alignment between the received GPS signal and the satellite
code causes their cross-correlation to spike. QuickSync harnesses
this property to perform both the Fourier and inverse Fourier trans-
forms in a time faster thanO(n logn), therefore reducing the overall
complexity of GPS synchronization.

The next subsections formalize the problem and detail the algo-
rithm.

3.1 Problem Formulation
The synchronization problem can be formulated as follows:

Given a spreading codec = c0, . . . , cn−1 of sizen and a received
signal x = x0, . . . , xn−1, find the time shift̂t that maximizes the
correlation betweenc andx, i.e., compute:

t̂ = arg maxc−n ⊛ x, (1)

where⊛ is a circular convolution andc−n is the time reversed code;
i.e.c−n = cn−1, . . . , c0. Computing this convolution in the time do-
main requires performingn correlations each of sizen and thus
has complexityO(n2). However, convolution in the time domain
corresponds to element-by-element multiplication in the frequency
domain. Therefore computing the convolution in Eq. 1 can be done
more efficiently by performing FFT on each of the code and the sig-
nal, multiplying those FFTs, then performing an inverse FFT (IFFT)
as shown below:

arg max
t

c−n ⊛ x = arg max
t

F−1{F{c}∗ · F{x}}, (2)

whereF(.) is the FFT,F−1(.) is the IFFT,∗ is the complex con-
jugate andt is any time sample in the output vector of the convolu-
tion. This reduces the complexity of the synchronization process to
O(n log(n)). Accordingly, in the remainder of this paper, we only
consider the FFT-based synchronization algorithm as a baseline for
evaluating QuickSync’s performance.

3.2 Basics
Before introducing our synchronization algorithm, we remind the

reader of a basic property of the Fourier transform, which we rely
on in our design:Aliasing a signal in the time domain is equivalent
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Figure 4—The duality of aliasing and subsampling.Aliasing in
the time domain corresponds to subsampling in the frequency do-
main and vice versa. Folding (aliasing) the time domain signal in
the top left results in the signal in the top right; specifically, time
samples 1 and 6 add into sample 1 in the aliased signal, samples
2 and 7 into sample 2, etc. In the Fourier domain, the FFT of the
aliased signal is a subsampled version of the FFT of the initial sig-
nal; namely, sample 1 in the bottom right signal corresponds to sam-
ple 2 in the bottom left, sample 2 corresponds to sample 4, etc.

to subsampling it in the frequency domain, and vice versa. Figure 4
illustrates this property.

Formally, letx be a discrete time signal of lengthn, andX its
frequency representation. Letx′ be a version ofx in which adjacent
windows of sizeB (whereB dividesn) are aliased on top of each
other (i.e., samples that arep = n/B apart are summed together).
Then, fort = 0 . . .B − 1:

x′
t =

n/B−1
∑

j=0

xt+jB. (3)

Thus,X′, the FFT ofx′ is a subsampled version ofX, and forf =
0 . . .B − 1

X′
f = Xpf , (4)

wherep = n/B, and the subscript inXpf refers to the sample whose
index isp × f .

3.3 The QuickSync Algorithm
We describe how QuickSync operates on a received GPS signal

to synchronize it with an internally generated C/A code. For sim-
plicity, we assume that the input signal neither exhibits a carrier fre-
quency offset nor a Doppler shift; in later sections, we extend the
algorithm to deal with these frequency offsets. Furthermore, in this
section, we describe the algorithm in the context of synchronizing
the GPS receiver with the signal of only one satellite; the algorithm
can be easily adapted for synchronizing with multiple satellites.

The key insight to our algorithm is that the IFFT performed in
step 3 of the FFT-based synchronization algorithm is sparse in the
time domain, i.e., it has only one spike and, hence, can be per-
formed in sub-linear time [14]. Further, a sub-linear time algorithm
for computing the sparse IFFT would require a sub-linear number
of samples as input; thus, there is no need to perform a fulln logn
FFT on the received GPS signal and obtain all of itsn frequency
samples. Rather, we only need to compute the frequency samples
that will be used to perform the sparse inverse FFT.

Below, we explain how we exploit these ideas to reduce the com-
plexity of both the IFFT and FFT performed to synchronize the
signal with the code. We then put these components together in a
complete algorithm.

(a) Sparse IFFT.
Inspired by recent work on sparse Fourier (inverse Fourier) trans-

form [14, 11], we develop a simple algorithm to efficiently perform
the IFFT step of GPS synchronization and quickly identify the spike
of the correlation between the received signal and the CDMA code.
To do so, our algorithm uses a sublinear number of samples of the
signal.

The sparse IFFT algorithm proceeds as follows. It first subsam-
ples the frequency domain signal of sizen by a factor ofp. It then
computes the IFFT over thesen/p frequency samples. Recall that
subsampling in the frequency domain is equivalent to aliasing in the
time domain. Thus, the output of our IFFT step is an aliased version
of the output in the original IFFT step shown in Fig 1. Aliasing here
can be viewed as a form of hashing, where then original outputs
samples, i.e. time shifts, are hashed inton/p buckets. Time shifts
which aren/p apart will be summed and hashed together in the
same bucket at the output of our IFFT. Since there is only one cor-
relation spike in the output of the IFFT, the magnitude of the bucket
it hashes into will be significantly larger than that of other buckets
where only noise samples hash to. Hence, the algorithm chooses
the bucket with the largest magnitude among then/p buckets at the
output of our IFFT.

Out of thep time shifts that aliased (or hashed) into this cho-
sen bucket, only one is the actual correlation spike. To identify the
spike among thesep candidate shifts, the algorithm correlates the
received signal with each of thosep shifts of the CDMA code. The
shift that produces the maximum correlation is the right spike.

Using aliasing as a form of hashing in our synchronization al-
gorithm, as opposed to other forms of hashing used in sparse FFT
algorithms (such as Gaussian and Dirichlet bucketization [15, 11]),
has two major benefits:

• Simplicity: Subsampling can be implemented simply by taking
a small IFFT of sizen/p on a subset of the input and does not
require any additional complex processing such as random hash-
ing.

• No Leakage: In subsampling, each non-zero sample is hashed
into exactly one bucket and does not leak power into any other
bucket. In alternative forms of hashing [14, 15], each non-zero
sample is hashed into a bucket where it is dominant but still leaks
power into other buckets, which reduces the performance of the
sparse IFFT algorithm.

(b) Subsampled FFT.
With the sparse IFFT step in place, the algorithm does not need

the wholen-point FFT of the signal. Specifically, all the IFFT re-
quires is a subsampled version of this signal. Thus, rather than tak-
ing a full n-point FFT, QuickSync aliases the received signal in the
time domain before taking its FFT, as in Eq. 3 (Said differently,
QuickSync sums up blocks of sizen/p and then computes a smaller
FFT of sizen/p.) The output of this FFT, expressed in Eq. 4, is ex-
actly the samples we need at the input of the sparse IFFT, described
above.

A subsampled input to the IFFT (as described in §3.3(a)) results
in an output spike of smaller magnitude relative to the noise bed. To
compensate for this loss, we aliasp × n samples instead ofn into
blocks of sizen/p before performing the FFT.

(c) Full Algorithm.
The QuickSync algorithm proceeds in the following steps:



1. Aliasing: Alias p × n samples of the GPS signal intoB = n/p
samples as described in Eq. 3, wherep =

√
logn.

2. Subsampled FFT:Perform an FFT of sizen/p on the aliased
time signal. This is effectively equivalent to performing an FFT of
sizepn and subsampling the output byp2 according to Eq. 4.

3. Multiplying with the code: Subsample the FFT of the satellite
CDMA code of lengthn by p, and multiply the resulting samples
by the n/p samples at the output of step 2, above. Note that the
algorithm can precompute the FFT of the CDMA code and store it
in the frequency domain.

4. Sparse IFFT: Perform an IFFT on then/p resulting samples.
Since the input of this IFFT was subsampled, its output is aliased in
the time domain. Specifically, each of then/p buckets at the output
of this stage is effectively the sum ofp aliased time samples7 as
described in §3.3a.

5. Find the unique solution: Find the bucket with the maximum
magnitude among then/p buckets. Then, check the correlation of
each of thep possible time shifts which are aliased into this bucket,
and pick the shift that gives the maximum correlation. Checking the
correlation can be done using onlyn/p samples as per Lemma A.7;
therefore, it takes a total ofp × n/p = n to perform the correlation
of thep shifts and pick the one that maximizes the correlation.

(d) Runtime.
The running time of the QuickSync algorithm may be computed

as follows. Step 1 performsnp additions. Step 2 performs an FFT
which takesn/p log(n/p). Step 3 performsn/p multiplications.
Step 4 takesn/p log(n/p) to perform the IFFT, and finally Step 5
performsn operations to compute the correlations and find the solu-
tion. Thus, the complexity of QuickSync isO(pn+(n/p) log(n/p)).
To minimize this complexity, we setp =

√
logn which makes the

overall running time of QuickSyncO(n
√

logn).

(e) Scaling with the SNR.
If the signal is too weak, GPS receivers repeat the synchroniza-

tion algorithm on subsequent signal samples and sum up the output
to average out the noise [36]. This approach allows the receiver to
scale the computation with the SNR of the signal. The approach
can be applied independent of the algorithm; hence, we also adopt
it for QuickSync. However, QuickSync operates on blocks of size
pn whereas the traditional FFT-based algorithm operates on blocks
of sizen. Both QuickSync and the traditional FFT-based algorithm
compare the magnitude squared of the largest spike to the noise
variance in the received signal. If the largest spike’s squared mag-
nitude exceeds the noise variance by a desired margin, the algorithm
terminates the search and declares the time shift corresponding to
the largest spike as the correct alignment. Otherwise, the algorithm
repeats the same process on the subsequent signal samples, and
sums the new output with the previous one. Since the spike cor-
responding to the correct synchronization is at the same time shift
in each run, it becomes more prominent. In contrast, noise spikes
are random and hence they tend to average out when combining the
output of multiple runs of the synchronization algorithm.

7 Note that we only getp candidate shifts (and notp2) because the
actual code is of size n; hence, all shifts mod n are the same. Thus,
although the total number of samples isnp and they are aliased into
n/p buckets, we only havep distinct shifts per bucket.

(f) Linear Time Algorithm.
The algorithm described in §3(c) above can be made linear-time

by modifying Step 1: instead of takingpn samples, we take only
n samples and alias them inton/p buckets, wherep = logn. The
rest of the steps are unmodified. This reduces the complexity of
Step 1 ton, and the total complexity of the algorithm toO(n +
(n/p) log(n/p)) = O(n).

This linear-time algorithm has weaker guarantees than the above
super-linear algorithm and may not always work at very low SNRs,
as detailed in §4. One can try this algorithm first. If a spike is de-
tected with the required margin, the algorithm terminates. Other-
wise, one can fall back to the super-linear algorithm in §3(c).

4. GUARANTEES
In this section, we analyze the performance of the baseline and

QuickSync algorithms (both the linear and super-linear variants),
under natural probabilistic assumptions about the input signalx.
In particular, we show that both the baseline and the super-linear
QuickSync are correct under the same asymptotic assumptions
about the variance of the noise in the signalx. At the same time, the
running time of our algorithm is equal toO(pn + (n/p) log(n/p)),
wherep is the number of blocks used. This improves over the base-
line algorithm which hasO(n logn) runtime as long as the termpn
is smaller than(n/p) log(n/p). In particular, by settingp =

√
logn,

we achieve the running time ofO(n
√

logn).

(a) Assumptions.
Recall that we usec = c0 . . . cn−1 to denote the spreading code.

We usec(t) to denote the codec shifted byt = 0 . . . n − 1, i.e.,
c(t)

i = ct+i mod n. We have thatx = c(t) + g for some shiftt, where
g denotes the noise vector. We make the following assumptions:

1. The coordinatesg0 . . . gn−1 of the noise vectorgare independent
and identically distributed random variables that follow a normal
distribution with zero mean and varianceσ. That is, we assume
additive white Gaussian noise (AWGN).

2. The coordinatesc0 . . . cn−1 of the spreading codec are inde-
pendent and identically distributed random variables with values in
{−1, 1}, such that Pr[ci = 1] = Pr[ci = −1] = 1/2. This assump-
tion models the fact that the CDMA code,c, is pseudorandom.

(b) Combining Multiple Runs.
As described in §3(e), both the baseline and our algorithm can

sum the output of multiple runs to average out the noise and in-
crease the probability of identifying the correct spike. The analysis
of such multi-run scenario can be derived directly from a single run.
Specifically, say the algorithm runsL times and sum up the outputs
of theseL runs. This is equivalent to reducing the noise variance
to σ′ = σ/L. Therefore, theL-run scenario can be analyzed by
reducing it to the case of a single run, with variance divided byL.

(c) Guarantees.
We start by stating the sufficient condition for the baseline algo-

rithm to work with probability approaching 1.

THEOREM 4.1. Assume that σ ≤ c(n)n/ ln n for c(n) = o(1).
Then the baseline algorithm is correct with probability 1− o(1).

The above condition is tight. Specifically,



THEOREM 4.2. There exists a constant c > 0 such that for σ ≥
cn/ ln n, the baseline algorithm is incorrect with probability 1 −
o(1).

We then proceed with the analysis of the two variants of the
QuickSync algorithm. The first statement holds for the super-linear
variant, and shows that the algorithm works with probability ap-
proaching 1 under the same condition as the baseline algorithm,
while being faster.

THEOREM 4.3. Assume that σ ≤ c(n)n/ln n for c(n) = o(1),
and that p = o(n1/6). Then, the QuickSync algorithm that aliases p
blocks of size n into n/p buckets is correct with probability 1−o(1).
The running time of the algorithm is O(pn+(n/p) log(n/p)), which
is O(n

√
logn) for p =

√
logn. Moreover, the algorithm performs

only O(n + (n/p) log(n/p)) multiplications, for any p.

Finally, we analyze the linear-time variant of the QuickSync al-
gorithm.

THEOREM 4.4. Assume that σ ≤ c(n) n
p ln n for c(n) = o(1),

and that p = o(n1/6). Then, the QuickSync algorithm that aliases
one block of n samples into n/p buckets is correct with prob-
ability 1 − o(1). The running time of the algorithm is O(n +
(n/p) log(n/p)), which is O(n) for p > logn.

See Appendix for the proofs.

5. DOPPLER SHIFT & FREQUENCY OFF-
SET

GPS satellites orbit the Earth at very high speeds. Consequently,
the GPS signal arrives at the receiver with a Doppler shift. This
shift is modeled as a frequency offsetfd which is a function of
the relative speed of the satellite (see Chapter 2 in [12] for exact
calculations). Furthermore, the discrepancy between the RF oscil-
lators of the GPS satellite and the GPS receiver induces a carrier
frequency offset∆fc. The total frequency offset∆f = fd +∆fc typ-
ically ranges from -10 kHz to 10 kHz [36] and is modeled as a phase
shift in the received samples. Formally, ifx andx̃ are respectively
the signal without and with a frequency offset then:

x̃t = xte
j2π∆ft, (5)

wheret is time in seconds.
Like past synchronization algorithms, QuickSync must search

and correct for the frequency offset in the received GPS signal in
order for the correlation to spike at the correct code shift. However,
since QuickSync processesp×n samples as opposed ton samples in
past algorithms(see §3), it needs to deal with larger phase shifts that
accumulate overpn samples. In order to overcome this limitation,
QuickSync performs a finer grained frequency offset search, which
introduces an overhead to the 2D search. This overhead, however,
is amortized across all satellites in the GPS signal since correcting
for this frequency offset is done on the received signal before it is
multiplied by each satellite’s C/A code. In §7.2, we show that de-
spite this overhead, QuickSync still provides a significant reduction
in the computational complexity of GPS synchronization. Further-
more, the frequency offset changes slowly (see §7.2); hence, the
receiver can cache its value from recent GPS readings, and does not
need to search for it for every GPS synchronization event.

(a) Sampler (b) Antenna

Figure 5—The SciGe GN3S Sampler.The sampler is used to col-
lect raw GPS data. It downcoverts the received signal and delivers
the I and Q samples to the computer.

6. TESTING ENVIRONMENT
(a) Data Collection.We test our algorithm on a data set consisting
of 40 GPS signal traces captured from urban and suburban areas
in US and Europe. The traces in US are collected using the SciGe
GN3S Sampler v3 [7] shown in Fig. 5(a). The GN3S is a form of
software radio that collects raw complex GPS signal samples. We
set the sampling rate of the GN3S to 4.092 MHz and its carrier
frequency to 1575.42 MHz. The traces from Europe are collected
using the USRP2 software radio [18] and the DBSRX2 daughter-
board, which operates in the 1575.42 MHz range and is capable of
powering up active GPS antennas [18]. The Europe traces are col-
lected with a sampling frequency of 4 MHz. We also use a 3V mag-
netic mount active GPS antenna shown in Fig. 5(b). These datasets
allow us to test the performance of QuickSync in different geo-
graphical areas and for different GPS receiver hardware.

(b) Baseline Algorithm.We compare our algorithm agains a base-
line that uses the traditional FFT-based synchronization [39]. The
baseline algorithm operates on blocks of sizen. If a spike is not
detected after processing the first block, the algorithm repeats the
computation on the next block, i.e., the next set ofn samples, and
sums up the output of the IFFTs. The algorithm keeps process-
ing more blocks until the magnitude of the peak crosses a certain
threshold (as described in §7.1). Note that the algorithm must sum
up the magnitudes of the output of the IFFTs rather than the actual
complex values; otherwise, samples would combine incoherently
due to the accumulated phase caused by the doppler shift (see §5).

(c) Implementation. We implement both QuickSync and the FFT-
based algorithm in Matlab and run them on the collected GPS
traces. Both algorithms use the FFTW [1] implementation inter-
nally to compute the Fourier transform (though the baseline com-
putes ann-point transform while QuickSync computes ann/p-point
transform).

(d) Metrics. We use two metrics for comparing the algorithms:
number of multiplications, and number of floating point operations
(FLOPs). We mainly focus on the number of real multiplications
executed until an algorithm finds the synchronization offset. This
metric is particularly important for hardware-based GPS synchro-
nization, where multiplications are significantly more expensive
than additions [32], and serve as standard metric to estimate the
complexity of a potential hardware implementation [4, 35].

Some GPS-enabled devices do not have a full fledged GPS re-
ceiver hardware to reduce cost and form factor [23]. They use a
GPS radio to collect signal samples, but offload the synchroniza-
tion algorithm to the main CPU of the device, where it is done
in software. To evaluate QuickSync’s performance on software-
based GPS receivers, we count the number of FLOPs executed
by both QuickSync and the baseline. FLOPs is a standard metric
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Figure 6—Probability of error versus threshold. The plot shows
that the probability of error decreases sharply for both algorithms,
and that a threshold of 90 for QuickSync and 100 for the baseline
produce a zero error probability.

used to evaluate software implementations of algorithms, including
FFTW [1]. It includes both multiplications and additions.

We count the FLOPs using OProfile, a standard profiler for Linux
systems [27]. We run the code in Matlab R2011b under Ubuntu
11.10 on a 64-bit machine with Intel i7 processor. We run OPro-
file from within Matlab in order to profile the part of the code
executed by each algorithm, and get a more accurate estimate of
the number of FLOPs. We program OProfile to log the counter
INST_RETIRED (the number of executed floating point operations
on the Intel i7 processor [27]).

7. RESULTS

7.1 Setting the Synchronization Threshold
As explained in §3(e), both QuickSync and the FFT-based syn-

chronization algorithm check that there is a sufficient margin be-
tween the detected maximum spike and the noise level, before ac-
cepting the spike as the one that identifies the correct alignment.
Specifically, they check that the ratio of the spike’s magnitude
squared to the noise variance exceeds a particular threshold. This
threshold defines how large the spike has to be in comparison to
the bed of noise to ensure enough confidence that the spike is not
due to noise and is indeed due to the code matching. Hence, the
threshold is a measure of the SNR of the spike and is not depen-
dent on the data. In particular, if the GPS data is noisy as in an
urban area, the algorithm will continue processing more data until
the threshold is crossed (as discussed in section §6(b)). In contrast,
if the GPS data is less noisy as in an open suburban area, the algo-
rithm will terminate early on since the spike will cross the threshold
after processing one or two blocks.

In this section, we aim to verify that there is such a threshold that
works for all datasets. Thus, we perform the following experiment.
We vary the threshold between a value of 1 and 200, and for each
of those values, we run both algorithms on a subset of the GPS
traces from both datasets. We define the probability of error as the
ratio of runs that output a false positive (i.e., in which the algorithm
terminates by returning an invalid shift) to the total number of runs
at a given threshold.

Fig. 6 plots the probability of errors versus the preset threshold.
The plot shows that setting the threshold to 90 for QuickSync and
100 for the baseline produces a zero error probability. The baseline
has a slightly higher error probability than QuickSync. This is be-
cause the baseline takes ann-point IFFT and, hence, has to ensure
that none of then − 1 noise spikes exceeds the correct spike that
corresponds to the proper alignment. In contrast, QuickSync takes
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Figure 7—Gain of QuickSync over the FFT-based algorithm
in number of multiplications. The two curves show the CDFs of
the QuickSync’s gains for the US and Europe datasets. QuickSync
achieves a median gain of around 2.2× and a maximum gain of
3.3×.

ann/p-point IFFT and hence has fewer noise spikes that have to be
kept below the threshold.

The figure also shows that the used metric is stable, i.e.: (1) the
metric is consistent across traces captured from two continents, and
(2) the probability of error decreases monotonically as the thresh-
old increases. This shows that the threshold is independent of the
location of the GPS receiver.

In the experiments that follow, we set the thresholds to 90 and
100 for QuickSync and the baseline respectively. We also use a dif-
ferent set of traces from those used in testing for this threshold to
ensure separation between testing and training.

7.2 Performance in Terms of Hardware Mul-
tiplications

We start by evaluating the performance gain of QuickSync over
FFT-based synchronization in terms of the number of hardware
multiplications. We run each of QuickSync and the FFT-based al-
gorithm on both traces collected in US and Europe. We run the
experiment 1000 times; each time taking a different subset of sam-
ples from these datasets. We compare the total number of multi-
plications required by each of the algorithms to synchronize with
the signals of satellites present in the GPS traces. Fig. 7 shows a
CDF of the gain. The gain is calculated as the number of multipli-
cations needed by the FFT-based algorithm divided by the number
of multiplications required by QuickSync. The figure shows that
QuickSync always outperforms the FFT-based synchronization on
both the US and EU traces with a median gain of 2.2×. This means
that QuickSync can save on average twice the number of hardware
multiplications.

To better understand the performance of QuickSync we zoom
in on the number of multiplications required by each algorithm for
each of the satellites. Specifically, each point in the CDFs in Fig. 7
corresponds to a full GPS reading with all satellites. However, be-
cause different satellites have different Doppler shifts and signal
strengths, we expect the gains to vary from one satellite to another.
Specifically, for each of the satellites detected in the Europe traces,
and for each GPS reading, we measure the number of multiplica-
tions required by both algorithms to perform the synchronization.
We repeat this experiment 1000 times on different subset of the
samples and plot the average results in Fig. 8.

Fig. 8 shows that each of the satellites, on average, requires less
multiplications using QuickSync. However, the gains vary consid-
erably among those satellites. For example, satellites 5 and 18 have
an average gain of 4× whereas satellites 14 and 15 have an aver-
age gain of only 1.5×. Examining the Doppler shifts of these satel-
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Figure 8—Number of multiplications on a per satellite basis for
the Europe trace.The gain of QuickSync over the FFT-based al-
gorithm varies among different satellites and ranges between and
1.5× and 4×.

Satellite Code: 9 12 14 15 18 21 22 25 27
Mean (Hz): 75 100 150 175 75 75 175 25 125
Max (Hz): 300 200 300 300 300 200 300 100 300

Table 1—Variation in the Doppler Shift in the US traces. For a
given satellite, the Doppler shift of the received signal varies very
little over a period of 2 hours and in an area of 2-mile diameter.

lites we find that satellites 5 and 18 have Doppler shifts of 6000 Hz
and 1000 Hz respectively while satellites 14 and 15 have Doppler
shifts of 600 Hz and 6800 Hz. This shows that the latter require a
finer grain Doppler search as explained in §5. However, because
QuickSync is opportunistic, it first attempts to search at courser
grain shifts (the same as the baseline), but falls back to finer reso-
lutions when it fails to detect a peak that passes the threshold. Even
in such scenarios, however, it consistently outperforms the baseline
as the figure shows.

In many scenarios, the receiver knows the Doppler shift a pri-
ori. The reason for this is that the Doppler shift varies only slightly
between nearby locations and over a time period of about an hour.
In order to test how much the Doppler shift varies, we measure
the Doppler shift of satellite signals in the GPS traces captured at
different locations within a 2-mile diameter geographical area over
a period of 2 hours. For each of those satellites, we calculate the
mean and the maximum variation in the Doppler shift of all those
signals and record them in Table 7.2. The mean change is around
100 Hz and the maximum is 300 Hz. Accordingly, since GPS re-
ceivers are duty cycled, whenever the receiver wakes up, it may use
the Doppler shift it calculated before going to sleep rather than per-
forming an exhaustive search for it. Alternatively, assisted GPS re-
ceivers may download the measured Doppler shift from an adjacent
base station [6]. In both of these situations, the GPS receiver can
significantly reduce the overhead of searching for the right Doppler
shift.

In order to measure the gains of QuickSync without the Doppler
search, we repeat the first experiment but this time by providing
each of the synchronization algorithms with the correct Doppler
shift for each satellite. Fig. 9 shows a CDF of QuickSync’s gain
over the FFT-based algorithm in terms of number of multiplications
over all the runs on both traces. For both traces, QuickSync achieves
a median gain of 4.8×. This shows that QuickSync’s gains increase
when the receiver caches the correct Doppler shift across readings.
We note that some of the traces benefit from QuickSync much more
than others; the reason is that these runs have higher SNRs such that
QuickSync can synchronize to their signals using the linear-time
algorithm without falling back to the super-linear variant.
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Figure 10—Gain of QuickSync over the FFT-based algorithm
in FLOPs. This metric illustrates the gains of QuickSync for a soft-
ware based implementation. The CDFs show a median gain about
2.2× and a maximum gain of around 3.7×.

7.3 Performance on software based GPS re-
ceivers

In this section, we test the performance of QuickSync on soft-
ware based GPS receivers in terms of the number of floating point
operations (FLOPs). We run QuickSync and the FFT-based algo-
rithm on the US and Europe traces and use OProfile to count the
number of FLOPs as described in §6. We run the experiment 1000
times with a different subset samples of the traces and calculate the
gain as the ratio of the number of FLOPs required by the FFT-based
algorithm to the number of FLOPs required by QuickSync. We do
not assume in this experiment that the Doppler shift is known and
we let both algorithms search for the right Doppler shift. Fig. 10
shows a CDF of the gains. QuickSync achieves a median gain of
2× and 2.3× over the FFT-based algorithm for the US and Europe
traces respectively. This shows that QuickSync can reduce the num-
ber of CPU computation on average by half in software based GPS
receivers.

8. RELATED WORK
FFT-based GPS synchronization was first proposed by Nee et

al. [39] who showed that it reduces synchronization complexity
from O(n2) to O(nlog(n)), wheren is the number of samples per
C/A code. QuickSync builds on this technique and recent advances
in sparse FFT to further reduce the synchronization complexity.

Our approach is related to past work on GPS block-
averaging [36, 24], which sums up consecutive signal blocks before
performing the FFT. QuickSync however differs from that work
along two axes: First, on the algorithmic front, past work performs
a full size FFT ofn points. One cannot simply replace thisn-point



FFT with sparse FFT because, as explained in §1, the output of the
FFT is not sparse. In contrast, QuickSync introduces a design that
can harness sparse FFT. This enables QuickSync to operate with
a smaller FFT of sizen/p, which provides faster synchronization.
Second, past work on block-averaging focuses on weak GPS signals
and does not provide an adaptive design that works for the whole
range of GPS SNRs. Applying their approach to the whole SNR
range can incur unnecessary overhead. This is because they aver-
age and pre-process many blocks independent of the SNR. As a
result, these schemes increase the synchronization delay for scenar-
ios in which only one (or a few) blocks are sufficient for detecting
the spike. In contrast, our algorithm adaptively processes more data
when the spike is too low for detection, and hence gracefully scales
with the SNR of the received GPS signal.

Signal synchronization is a general problem that applies to other
wireless technologies, e.g., WiFi and cellular. However, synchro-
nization in these technologies is simpler because the noise level in
the received signals is much lower than in GPS. For example, WiFi
receivers can lock on the signal simply by detecting an increase in
the received power [16]. This is not possible in GPS since the sig-
nal is received at 20 dBbelow the noise floor [31]. Cellular systems
also operate at much higher SNRs than GPS, which allows them to
synchronize with relatively low overhead [21].

QuickSync is also related to the general class of work on reduc-
ing GPS power consumption. The most common approach uses
assisted-GPS [19, 33], which involves connecting to an assisted
GPS server through a WiFi or cellular network. The server pro-
vides the GPS receiver with the GPS data decoded from each satel-
lite signal, which allows the receiver to avoid decoding the GPS
signal. The device can also offload GPS computations to the server
after acquiring the GPS signal [9]. The latter approach, however, re-
duces the complexity of the device but still consumes much power
because it requires the device to transmit the undecoded noisy GPS
signal to the cellular tower (thus consuming transmission power and
even bandwidth [9]). Other approaches for reducing GPS power
consumption leverage WiFi, sensors, or the cellular signal to lo-
calize the receiver [38, 3, 25]. These schemes typically are less ac-
curate than GPS and are more constrained in terms of where they
can be deployed. Our work contributes to this effort by tackling the
complexity of the GPS receiver itself.

Finally, QuickSync builds on recent advances in sparse FFT al-
gorithms [11, 14, 15]. These algorithms are designed for the case
where the output of the Fourier Transform contains only a small
number of spikesk, and use a variety of signal filters (Dirichlet,
Gaussian, or Dolph-Chebyshev filters) to isolate and identify each
of the spikes. The running times range fromO(logn

√
nk logn) [14]

to O(k log4 n) [11] andO(k logn log(n/k)) [15]. The synchroniza-
tion problem differs from the sparse Fourier problem in that only
the IFFT is sparse. Hence, simply applying past sparse FFT algo-
rithms does not reduce synchronization complexity.

9. CONCLUSION
This paper presents the fastest synchronization algorithm for

GPS receivers to date. The gains of the algorithm are also em-
pirically demonstrated for software GPS implementations as well
as potential hardware architectures. Because synchronization con-
sumes a significant amount of power, we expect the reduced com-
plexity to decrease GPS power consumption. Further, we believe
that the sparse synchronization algorithm we introduced has other
applications in signal processing and pattern matching. We plan to
explore those applications in future work.
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APPENDIX

A. PROOFS

A.1 Analysis of the baseline algorithm
The baseline algorithm computesak = c(k) · x for all shiftsk =

0 . . . n − 1. The probability that the algorithm reports an incorrect
output is equal to

P(σ) = Pr[at ≤ max
k 6=t

ak]

To estimate the probability of success as a function ofσ, we derive
the distribution of the coordinatesak. From our assumptions we
have thatak = c(k) · (c(t) + g) = vk + uk, wherevk = c(k) · c(t) and
uk = c(k) · g. Note thatuk has normal distribution with zero mean
and variance

Var[uk] = Var[
n−1
∑

i=0

c(k)
i gi] = nVar[c(k)

1 ]Var[g1] = nσ

Regardingvk, we have the following two cases:

• If k = t, i.e., for the correct value of the shift, we havevt =
c(t) · c(t) = n.

• If k 6= t, i.e., for an incorrect value of the shift the expectation of
vk is 0.

We need to boundP(σ) = Pr[n + ut ≤ maxk 6=t vk + uk]. The
following theorem establishes the sufficient (and as we show later,
necessary) condition for the baseline algorithm to be correct with
probability 1− o(1), i.e.,P(σ) → 0 asn → ∞.

LEMMA A.1. Assume that σ ≤ c(n)n/ ln n for c(n) = o(1).
Then P(σ) = o(1).

PROOF: We will bound the probabilities of the following events:
E1: ∃k 6=tuk ≥ n/3; E2: ut ≤ −n/3 ; E3: ∃k 6=tvk ≥ n/3. If none of
the events hold then the algorithm output is correct. We will show
that Pr[E1] + Pr[E2] + Pr[E3] = o(1).

To analyzeE1 andE2 recall the following fact:

FACT A.2. Let Φ(s) be the c.d.f. of the normal distribution with
zero mean and unit variance. Then for s > 0

1− Φ(s) ≤ e−s2/2/s

We can now bound

Pr[E1] ≤ n Pr[uk ≥ n/3] = n(1− Φ(
n/3

√

Var[uk]
))

where k is any index distinct fromt. Since Var[uk] = nσ ≤
c(n)n2/ ln n, we have

Pr[E1] ≤ n(1− Φ(
√

ln n/(9c(n)))) ≤ eln n · e−
ln(n)

18c(n) = o(1)

The probability Pr[E2] can be bounded in the same way.
To bound Pr[E3], assume without loss of generality thatt = 0. In

this case

vk = c(k) · c

= (ckc0 + ck+1c1 + . . .+ cn−1cn−k−1)

+ (c0cn−k + . . .+ ck−1cn−1)

= Sk + S′
k

The terms in the sumSk + S′
k are in generalnot independent.

In particular, ifk = n/2, thenSk = S′
k. However, we observe the

following.

CLAIM A.3. Each of Sk and S′
k is a sum of independent random

variables taking values in {−1, 1} with probability 1/2.

The claim enables us to bound each sum separately. We will
bound Pr[S′

k ≥ n/6] first. If k < n/6 then the probability is zero.
Otherwise, by applying the Chernoff bound we have

Pr[S′
k ≥ n/6] ≤ e−(n/6)2/(2k) ≤ e−n/72

The probability Pr[Sk ≥ n/6] can be bounded in the same way.
Hence Pr[E3] ≤ ne−n/72 = o(1).

Theorem 4.1 follows from Lemma A.1.

A.2 Tightness of the variance bound
In this section we show that the assumption on the noise variance

used in Theorem 4.1 is asymptotically tight. Specifically, we show
that if σ ≥ cn/ ln n for some large enough constantc > 0, then
there with probability 1− o(1) the output of the baseline algorithm
is incorrect. This will prove Theorem 4.2.

Recalling the notation in Section A.1, we haveat = n + ut, ak =
vk + uk for k 6= t. We need to show thatP(σ) = Pr[at ≤ maxk 6=t ak]
approaches 1 forc large enough. To this end, we first observe that (i)
vk ≥ −n holds always and (ii) Pr[ut ≥ n] = o(1) sinceut is a nor-
mal variable with variancenσ = O(n2/ ln n), so the desired bound
holds e.g., by Chebyshev inequality. Hence it suffices to show that

Pr[sup
k 6=t

uk ≤ 3n] = o(1) (6)



The main difficulty in proving Equation 6 is the fact that the
random variablesuk are not independent. If they were, a simple
calculation would show that the expected value of the maximum
of n independent normal variables with variancenσ is at least√

nσ ln n = cn, which is larger thanat = n for a large enough
c. This would then ensure that the reported shift is distinct from
t with constant probability. Unfortunately, the independence could
be guaranteed only if the shifted codesc(k) were orthogonal, which
is not the case.

Instead, our argument utilizes the fact that the shifted codesc(k)

are "almost" orthogonal. Specifically, letC = {c(k) : k 6= t}. Since
(as shown in the earlier section in the context of the eventE3) the
probability that for any pairc 6= c′ ∈ C we havec·c′ ≤ n/3 iso(1),
it follows that‖c− c′‖2

2 ≥ n for all suchc, c′ ∈ C with probability
1− o(1).

We can now use a powerful inequality due to Sudakov [30] to
show that the random variablesuk are "almost" independent, and
thus the expected value of the maximum is still

√
nσ ln n. In our

context, the inequality states the following.

FACT A.4. There exists a constant c2 > 0 such that if D is the
Euclidean distance between the closest pair of vectors in C, then:

E = E[max
c∈C

c · g] ≥ c2D
√
σ ln n

SinceD =
√

n, we obtain that

E ≥ c2
√

n
√

cn/ ln n · ln n = c2n

The lower bound on the expected value of the maximum can be
then converted into an upper bound on probability that the maxi-
mum is much lower than its expectation (this follows from simple
but somewhat tedious calculations). This leads to Equation 6 and
completes the proof of Theorem 4.2.

A.3 Analysis of the QuickSync algorithm
In this section we show that the probability of correctness for the

QuickSync algorithm that aliases inton/p buckets exhibits a similar
behavior to the baseline algorithm, albeit with the bucket variance
larger by a factor ofO(p). At the same time, the running time of our
algorithm is equal toO(pn + (n/p) log(n/p)). This improves over
the baseline algorithm which hasO(n logn) runtime as long as the
termpn is smaller than(n/p) log(n/p).

Recall that the algorithm first computes the aliased spreading
codec(p) and signalx(p), defined as

c(p)i =

p−1
∑

q=0

ci+qn/p andx(p)i =

p−1
∑

q=0

xi+qn/p

for i = 0 . . . n/p − 1. The aliased noise vectorg(p) is defined in an
analogous way.

The application of FFT, coordinate-wise multiplication and in-
verse FFT computes

a(p)k = c(p)(k) · x(p)

for all shifts k = 0 . . . n/p − 1. The algorithm then selectsa(p)k

with the largest value. The last step of the algorithm fails if for
t′ = t mod n/p we havea(p)t′ ≤ maxk 6=t′ a(p)k. Let P′(σ) be
the probability of this event. We will show that as long asσ =
o(pn/ ln n) we haveP′(σ) = o(1).

LEMMA A.5. Assume that σ ≤ c(n) n
p ln n for c(n) = o(1), and

that p = o(n1/6). Then P′(σ) = o(1).

PROOF: We start by decomposing each terma(p)k:

a(p)k

=

n/p−1
∑

i=0





p−1
∑

q=0

c(k)
i+qn/p









p−1
∑

q=0

c(t′)
i+qn/p +

p−1
∑

q=0

gi+qn/p





=

n/p−1
∑

i=0





p−1
∑

q=0

c(k)
i+qn/p









p−1
∑

q=0

c(t′)
i+qn/p





+

n/p−1
∑

i=0





p−1
∑

q=0

c(k)
i+qn/p









p−1
∑

q=0

gi+qn/p





= vk + uk

Consider the following events:E0: vt′ ≤ n − n/4; E1: ∃k 6=t′uk ≥
n/4; E2: ut′ ≤ −n/4; E3: ∃k 6=t′vk ≥ n/4. If none of the events
hold, then the algorithm output is correct. We need to show that
Pr[E0] + Pr[E1] + Pr[E2] + Pr[E3] = o(1).

Events E1 and E2.
Let ĉi =

∑p−1
q=0 ci+qn/p, ĝi =

∑p−1
q=0 gi+qn/p and m = n/p.

Observe that|ĉ| ≤ p and ĝi’s are i.i.d. random variables cho-
sen from the normal distribution with mean zero and variance
pσ. Conditioned on the choice of̂cis, the random variableuk =
∑m−1

i=0 ĉi+kĝi has normal distribution with varianceµpσ, where
µ =

∑m−1
i=0 (ĉi+k)

2. We first show thatµ ≤ 4pm with very high
probability, and then bound the tail of a normal random variable
with variance 4pm.

The following fact is adapted from [22], Theorem 3.1.

FACT A.6. Let Rij, i = 0 . . .m − 1 and j = 0 . . . p − 1, be i.i.d.
random variable taking values uniformly at random from {−1, 1}.
Let Ti = 1/

√
m
∑p−1

j=0 Rij. There is an absolute constant C such that

Pr[
m−1
∑

i=0

T2
i ≤ 4p] ≥ 1− 2e−m/C

Applying the fact toRij = c(k)
i+jn/p, we conclude that with proba-

bility 1 − o(1) we haveµ ≤ m
∑m−1

i=0 T2
i ≤ 4pm = 4n. In that case

Var[uk] ≤ 4npσ ≤ 4npc(n) n
p ln n = 4n2c(n)/ ln(n). We then follow

the proof of Lemma A.1.

Event E0.
Observe thatvt′ is a sum of termsqi = (

∑p−1
q=0 c(t′)

i+qn/p)
2, where

eachqi is a square of a sum ofp independent random variables tak-
ing values in{−1, 1} with probability 1/2. It follows thatE[qi] =
p, and thereforeE[vt′ ] = n/p · p = n. To bound the deviation ofvt′



from its meann, we first compute its variance.

Var[vk] = Var[
n/p−1
∑

i=0

qi]

≤ n/p · E[q2
1]

= n/p · E[(
p−1
∑

q=0

c(t′)
1+qn/p)

4]

= n/p · (
(

4
2

)

∑

q6=q′

E[(c(t′)
1+qn/p)

2(c(t′)
1+q′n/p)

2]

+
∑

q

E[(c(t′)
1+qn/p)

4])

= n/p · (6p(p − 1) + p) ≤ 7pn

We can now use Chebyshev’s inequality:

Pr[|vt′ − n| ≥ n/4] ≤ Var[vt′ ]/(n/4)2 ≤ 7pn/(n/4)2 = o(1)

Event E3.
It suffices to bound Pr[E3]. To this end we bound Pr[vk ≥ n/4].

Without loss of generality we can assumet = 0. Then vk =
∑n/p−1

i=0 ĉiĉi+k, wherei + k is taken modulon/p.
We first observe that in each term̂ciĉi+k, the random variableŝci

and ĉi+k are independent (sincek 6= 0). This impliesE[ĉiĉi+k] =
E[ĉi]E[ĉi+k] = 0, and thereforeE[vk] = 0.

To bound Pr[vk ≥ n/4], we compute the fourth moment ofvt′

(using the second moment does not give strong enough probability
bound). We have

E[v4
k ] = E[(

n/p−1
∑

i=0

ĉiĉi+k)
4]

=

n/p−1
∑

i1,i2,i3,i4=0

E[ĉi1 ĉi1+k · ĉi2 ĉi2+k · ĉi3 ĉi3+k · ĉi4 ĉi1+k]

Observe that the expectation of any term in the above sum that
contains an odd power ofĉi is zero. Hence the only remaining terms
have the formE[ĉ2

j1 ĉ2
j2 ĉ2

j3 ĉ2
j4], wherej1 . . . j4 are not necessarily dis-

tinct. LetI be a set of such four-tuples(j1, j2, j3, j4). We observe that
for (j1, j2, j3, j4) to belong inI, at least two disjoint pairs of indices
in the sequencei1, i1+ k, i2, i2+ k, i3, i3+ k, i4, i4+ k must be equal.
This means that|I| = C(n/p)2 for some constantC. Since|ĉi| ≤ p,
we haveE[v4

k ] ≤ C(n/p)2p8 ≤ Cn2p6. Thus

Pr[vk ≥ n/4] ≤ E[v4
k ]/(n/4)4 ≤ Cn2p6

(n/4)4
= C · 44 · p6/n2

This implies Pr[E3] ≤ n Pr[vk ≥ n/4] ≤ C · 44 · p6/n which iso(1)
if p = o(n1/6).

We now show that if the noise varianceσ is "small" then one can
check each shift using few time domain samples.

LEMMA A.7. Assume that σ ≤ c(n) n
p ln n . Consider an algo-

rithm that, given a set K of p shifts, computes

a′
k = c(k)[0 . . . T − 1] · x[0 . . . T − 1]

for T = n/p, and selects the largest ak over k ∈ K. Then

P′′(σ) = Pr[at ≤ max
k 6=t

ak] = o(1)

PROOF: The argument is similar to the proof of Lemma A.1. We
verify it for an analog of the eventE1; the proofs forE2 andE3 are
straightforward syntactic modifications of the original arguments.

First, observe thatc(t)[0 . . . T − 1] · c(t)[0 . . . T − 1] = T. Let
u′

k = c(k)[0 . . . T − 1] · g[0 . . . T − 1]. Consider the eventE′
1 :

∃k∈Ku′
k ≥ T/3. We can bound

Pr[E′
1] ≤ p Pr[u′

k ≥ T/3] = n(1− Φ(
T/3

√

Var[u′
k]
))

Since Var[u′
k] = Tσ ≤ c(n) n2

p2 ln n
, we have

Pr[E′
1] ≤ p(1− Φ(

√

ln n/(9c(n)))) ≤ eln ne−
ln(n)

18c(n) = o(1)

Proofs of Theorem 4.3 and Theorem 4.4.
To prove Theorem 4.3, recall that given a signalx consisting of

p blocks, each of lengthn and with noise varianceσ, QuickSync
starts by aliasing thep blocks into one. This creates one block of
length n, with noise varianceσ/p (after normalization). We then
apply Lemmas A.5 and A.7.

Theorem 4.4 follows from the assumption thatσ = c(n) n
p ln n and

Lemma A.5.
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