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Motivation: Signal Denoising
Noisy speech signal y

y = s+w

s: noise-free speech signal
w: noise sequence

Example: Denoising using BPD

Noisy speech signal y

y(m) = s(m) + w(m), 0 6 m 6 M � 1, M = 500 (23)

s : noise-free speech signal
w : noise sequence.
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Motivation: Signal Denoising

Digital LTI filters are often used for noise reduction (denoising),
lowpass filter

highpass filter

bandpass filter

bandstop filter
but not applicable for

the noise and signal overlap in the frequency domain

the respective frequency bands are unknown
So, let’s take a look at Sparsity!
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Motivation: Signal Denoising

Assume the noise-freen speech signal s has a sparse set of Fourier
coefficients:

yyy =AAAccc+www

yyy: noisy speech signal, length M
AAA: M ×N DFT matrix
ccc: sparse Fourier coefficients, length N
www: noise, length M
Find estimation of ccc (BPD algorithm)

ĉcc= argmin
ccc

{
∥yyy−AAAccc∥2

2 +λ∥ccc∥1
}

Once ĉcc is found, an estimate of the speech signal is given by ŝss=AAAĉcc
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Motivation: Signal DenoisingExample: Denoising using BPD

BPD solution
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Obtained with algorithm SALSA. E↵ective noise reduction, unlike least squares!
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Motivation: Signal Deconvolution

If the signal of interest x is not only noisy but is also distorted by an LTI
system with impulse response h, then the available data y is

y = h⊛x+w ⇐⇒ yyy ===HHHxxx+++www

w is additive noise, h is known system function.
Applications include:

echo cancellation

direction of arrival estimation

localization in GPS

etc.
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Motivation: Signal Inpainting
Due to data transmission/acquisition errors, some signal samples may be
lost. Fill in missing values for error concealment.
Part of a signal or image may be intentionally deleted (image editing, etc).
Convincingly fill in missing values according to the surrounding area to do
inpainting.

yyy === SSSxxx

SSS is the selection (sampling) operator

Example: Filling in missing samples using BP

Due to data transmission/acquisition errors, some signal samples may be lost.
Fill in missing values for error concealment.

Part of a signal or image may be intentionally deleted (image editing, etc).
Convincingly fill in missing values according to the surrounding area to do
inpainting.
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Motivation: Signal Separation

For a signal composed by two different type of data

x= x1 +x2

x1 is sparse under transform with operator A1, x2 is sparse under
transform with operator A2, then signal x can be separated by solving

{ĉ1, ĉ2} = argmin
c1,c2

{
∥x−A1c1 −A2c2∥2

2 +λ1∥c1∥1 +λ2∥c2∥1
}

Once get c1, c2, the two components can be estimated
x̂1 =A1ĉ1, x̂2 =A2ĉ2.
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Motivation: Signal Separation
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Sparse Signal Processing

Canonical problem
yyy ===AAAccc+++nnn

Find c via optimization

ĉcc= argmin
ccc

{∥yyy−−−AAAccc∥2
2 +λψ(ccc)}

Exploiting sparsity is good,
normally with better performance than traditional method,

linear measurement model,

nonlinear, thus hard to solve
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Sparsity
A vector x ∈ Rn is sparse if only a few entries are nonzero:

The number of nonzeros is called the ℓ0-norm of x:

∥x∥0 ≜#{i|xi ̸= 0}

Denote Σk the set of all k-sparse signals. And geometrically

∥x∥p =
(∑

i

|xi|p
)1/p

⇒ ∥x∥0 = lim
p→0

∥x∥p
p
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Sparsity is Universal
Signal is itself not sparse at all, then sparsify it!!!

x= Ψα, s.t. α ∈ Σk

Fixed dictionaries: Wavelet, DCT, etc.

Learned dictionaries: K-SVD
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The sparse solution
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The sparse solution
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Linear Inverse Problem

Measurement fitness (M ≪N):
x̂ = argmin∥y−Ax∥2

2
1. Infinite solutions;

2. Over-fitting.

ℓ2 energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥2
2

1. Solution is not sparse.

x1

x2

Sparse signal x
⋆
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Linear Inverse Problem

Measurement + ℓ2 Energy

Measurement fitness (M ≪N):
x̂ = argmin∥y−Ax∥2

2
1. Infinite solutions;

2. Over-fitting.

ℓ2 energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥2
2

1. Solution is not sparse.

x1

x2

y = Ax

x̂ ̸= x
⋆

∥x∥2 = c
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Linear Inverse Problem

Measurement + ℓ1 Energy

ℓ1 energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥1

1. Unique sparse solution;

2. Noise robustness.

ℓp energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥p

1. Sharper, but non-convex.

x1

x2

y = Ax

∥x∥1 = c

x̂ = x
⋆
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ℓp energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥p

1. Sharper, but non-convex.

x1

x2

y = Ax

∥x∥1 = c

ϵ

x̂ = x
⋆ + e(ϵ)
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Linear Inverse Problem

Measurement + ℓ1 Energy

ℓ1 energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥1

1. Unique sparse solution;

2. Noise robustness.

ℓp energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥p

1. Sharper, but non-convex.

x1

x2

y = Ax

ϵ

∥x∥p = c, 0 < p < 1

x̂ = x
⋆
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Linear Inverse Problem

Measurement + ℓ1 Energy + Structures

Group energy limited:
x̂ = argmin∥y−Ax∥2

2 +λ ∥x∥G
where

∥x∥G =
∑
G∈G

∑
j∈G

dj ·x2
j


1
2

with G the

set of groups, dj the weight.
1. Sharper, still convex.

x1

x2

y = Ax

ϵ

∥x∥G = c

x̂ = x
⋆ + e(ϵ)
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Low-Rank Model
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Low-Rank ModelApplications – Low rank structures in visual data 

Visual data exhibit low-dimensional structures 
due to rich local regularities, global symmetries, 
repetitive patterns, or redundant sampling. 
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Low-Rank ModelTwo Low-Dimensional Representations 

Low-rank Structures Sparse Structures Corrupted Observations 

Sparse Representation 

Robust PCA 

sp
ar

se
 

Vast number of candidate applications 
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Low-Rank Model

Low-rank model:
Y =X+E+N

Robust PCA (Non-tractable):

min
X,E

1
λ

∥Y −X−E∥2
F + rank[X]+ 1

n
∥E∥0

Convex Relaxation:

min
X,E

1
λ

∥Y −X−E∥2
F +∥X∥∗ + 1√

n
∥E∥1
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Classical Sampling Formulation
The Shannon sampling theorem provides sufficient but not necessary
conditions for perfect reconstruction.
Moreover: How many real signals are bandlimited? How many realizable
filters are ideal low-pass filters?
By the way, who discovered the sampling theorem? The list is long ;-)

Whittaker 1915, 1935

Kotelnikov 1933

Nyquist 1928

Raabe 1938

Gabor 1946

Shannon 1948

Someya 1948
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Recall of Sampling Theory

Shannon’s sampling theory: uniformly sample data at Nyquist rate (2
times of Fourier bandwidth)
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Procedure of sampling
Traditional sampling theorem admits the following procedure:

Uniformly sample data at Nyquist rate

compress data

transmit and receive

decompress data
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Compressive Sensing (CS)

CS directly acquire “compressed” data
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Compressive data acquisition

When data is sparse, CS can directly acquire a compressed
measurement with no information loss

y =Ax

Random projection will work
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CS v.s. Shannon’s thoery

Signal model
In CS, signals are sparse;

In Shannon’s theory, signals are Fourier bandlimited

Sampling procedure
In CS, acquire information via random projection

In Shannon’s theory, acquire data via uniform sampling

Recovery method
In CS, recover signal via nonlinear algorithm;

In Shannon’s theory, recover signal via linear interpolation.
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Compressive Sensing
Given a signal x ∈ Rn, CS measurements are obtained by linear projection

y =Ax

with A ∈ Rm×n the sensing matrix and y ∈ Rm the captured
measurements.
Underdetermined
Notice that m≪ n, leading to a underdetermined linear system.

Questions:

1. How should we design the sensing matrix A?
→ to preserve information

2. How can we recover the original signal x?
→ to recover information (Sparse Representation/Sparse Recovery)
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Properties of Sensing Matrix

1. Spark

2. Null Space Property (NSP)

3. Restricted isometry Property (RIP)

4. Coherence
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Spark

定义

The spark of a given matrix A is the smallest number of columns of A
that are linearly dependent.

例

1. A=

 0 1 0 0 1
1 0 0 0 1
0 0 1 1 1

, spark(A)=?

2. ∀A ∈ Rm×n with m< n, what is the maximum spark of A?

∀A ∈ Rm×n,spark(A) ∈ [2,m+1]
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Null space property

Null space
N (A) = {z :Az = 0}

Null space property (NSP) A matrix A satisfies the NSP of order k
if there exists a constant C > 0 such that,

∥hΛ∥2 ≤ C
∥hΛc∥1√

k

holds for all h ∈ N (A) and for all Λ with |Λ| ≤ k.
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Restricted isometry property
定义

A matrix A satisfies the Restricted Isometry Property (RIP) of order k if
there exists a δk ∈ (0,1), such that (for all x ∈ Σk)

(1− δk)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1+ δk)∥x∥2
2

Links to singular values
x ∈ Σk, denote Γ = supp{x}, AΓ the submatrix of A, the twoside
inequalities is equivalent to

1− δk ≤ ∥AΓxΓ∥2
2

∥xΓ∥2
2

≤ 1+ δk

Note that ∥AΓxΓ∥2
2

∥xΓ∥2
2

is bounded in
[
λmin(AT

ΓAΓ),λmax(AT
ΓAΓ)

]
.
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Coherence
定义

The coherence of a matrix A, µ(A), is the largest absolute inner product
between any two columns ai,aj of A

µ(A) = max
1≤i<j≤n

|⟨ai,aj⟩|
∥ai∥2∥aj∥2

Bounds of Coherence
√

n−m

m(n−1)
≤ µ(A) ≤ 1

if m≪ n, the lower bound is approximately 1√
m

.
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Links between these properties

RIP ⇒ NSP: If δ2k <
√

2−1, then A satisfies NSP of order 2k, with
constant

C =
√

2δ2k

1− (1+
√

2)δ2k

Coherence ⇒ RIP
δk = (k−1)µ(A)

with k < 1/µ.

Spark v.s. coherence

spark(A) ≥ 1+ 1
µ(A)
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Information preserving

For sparse signals, the CS measurements

y =Ax (1)

where A ∈ Rm×n with m≪ n, x ∈ Σk, and y ∈ Rm.

Information preserving ⇔ uniqueness of solution.
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Uniqueness of solution
定理

For any vector y ∈ Rm, there exists at most one signal x ∈ Σk, such that
y =Ax if and only if spark(A)> 2k.

证明.

1. Necessity: Suppose spark(A) ≤ 2k
⇒ there exists 2k colomns of A that are dependent
⇒∃h ∈ Σ2k, s.t. h ∈ N (A) ⇒ ∃x1,x2 ∈ Σk, s.t. h= x1 −x2
⇒ Ax1 =Ax2 (Contradiction)

2. Sufficiency: Suppose ∃x1,x2 ∈ Σk, s.t. y =Ax1 =Ax2
⇒ h= x1 −x2 ∈ Σ2k, i.e. Ah= 0
⇒ h= 0, i.e. x1 = x2 (since spark(A)> 2k)
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Intuition of Information Preserving

Suppose:

y =Ax=
∑

i∈supp(x)
aixi

Intuition: Recovering x is "easier" if the ai are not too similar ...
This is exactly the definition of coherence: (smaller the better)

µ(A) = max
i ̸=j

|⟨ai,aj⟩|
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Uniqueness of solution (other conditions)
Considering the sparse signals Σk, the uniqueness of solution

∀x1,x2 ∈ Σk,x1 ̸= x2 ⇔Ax1 ̸=Ax2

Spark guarantee
spark(A)> 2k

NSP guarantee
A satisfies NSP of order 2k

RIP guarantee
δ2k < 1

Coherence guarantee
µ(A)< 1

2k−1
Lei Yu (School of Electronic and Information Wuhan University)Sparse Signal Processing Master Course, 2017 42 / 135
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Limitations of Coherence
For any m×n matrix A, its coherence

µ(A) ≥
√

n−m

m(n−1)
Thus sparsity level should satisfy

k <
1
2

(1+µ(A)−1) =O(
√
m)

Truth is often much better (Phase transition at k = α∗m)
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Necessary measurement number with RIP
定理 (Candes 2005, 2008)
Suppose y =Ax0 with RIP constant δ2k <

√
2−1, then x0 is the unique

optimal solution to
min∥x∥1, s.t.y =Ax

定理

Let A ∈ Rm×n satisfies RIP of order 2k, with constant δ ∈ (0, 1
2

]. Then

m≥ Ck log
(
n

k

)
where C = 0.5log(

√
24+1) ≈ 0.28.

k ∼m when considering RIP of matrix A
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Constructing sensing matrix
Deterministic method

Random method
For any random matrix,

spark(A) =m+1

with probability 1.

For sub-Gaussian, if

m=O
(
k/δ2

2k log
(n
k

))
then RIP of order 2k is fulfilled with probability at least
1−2exp(−c1δ

2
2km).

For any zero-mean and finite variance distribution, it has

µ(A) =
√

(2 logn)/m
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CS with Chaotic Sequence

Logistic map
zn+1 = rzn(1−zn)

Constructing chaotic matrix

A=
√

2
m


x0 · · · xm(n−1)
x1 · · · xm(n−1)+1
...

...
...

xm−1 · · · xmn−1

 (2)

where xk = 1−2zn+kd with zn+kd the coefficient selected from
generated chaotic set Z(d,k,z0) = {zn,zn+d, ...,zn+kd, ...}.

[1] L. Yu, etc., “Compressive Sensing With Chaotic Sequence,”IEEE SPL, 2010.
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Statistical Independence

定理

Denote Z = {zn,zn+1, · · · ,zn+r, · · ·} the sequence generated by Logistic
map with intial state z0 = cos(2πx), and integer d the sampling distance,
then for any positive integer m0,m1 < 2d, it has

E(zm0
n zm1

n+d) = E(zm0
n )E(zm1

n+d)

定理

Chaotic matrix A ∈ Rm×n constructed as (2) satisfies RIP of order k for
constant δ ∈ (0,1), with overwhelming probability, providing that
m≥O(k log(n/k).
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Performance: successful recovery rate
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Signal recovery for variable matrix with size 50x100

 

 
Chaotic matrix
Sparse matrix
Gaussian random matrix
Bernoulli random matrix

图: Signal recovery for different sensing matrix with size 50×100.
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Outline
1 Motivation
2 Low-dimensional Signal Model

Sparsity
Beyond Sparsity

3 Compressive Sensing
4 Sparse Representation
5 Relation to Deep Learning
6 Applications

Imaging
Radar Signal Processing
Image Denoising/Inpainting/Super-resolution
Image Calibration and Rectification
Face Recognition
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Sparse Representation/Sparse Recovery

1. Basis pursuit

2. Basis pursuit denoising

3. Matching pursuit

4. etc.

5. Bayesian approach

6. Deep learning

7. Analog approach
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Basis pursuit

Basis pursuit (BP) problem:

ĉcc= argmin
ccc

∥ccc∥1, s.t. yyy =AAAccc

convex problem

noise-free
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Basis pursuit denoising

Basis pursuit denoising (BPD) problem

ĉcc= argmin
ccc

{
∥yyy−AAAccc∥2

2 +λ∥ccc∥1
}

convex problem

noisy, λ is a parameter balancing measurement fidelity and sparse
prior.
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Matching pursuit

Matching pursuit problem (approximately)

ĉcc= argmin
ccc

∥yyy−−−AAAccc∥2
2, s.t. ∥ccc∥0 ≤K

efficient

approximately solve the L0 problem.

variations: orthogonal matching pursuit, CoSaMP, ...
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Bayesian Interpretation

MAP : p(x|y) =
p(y|x) p(x)∫
p(y|x)p(x)dx

Measurement Likelihood: Gaussian noise model

y−Ax ∼ N (0,σ0)

Energy Prior: sparse promoting model

e.g. x ∼ Laplace(0, b)

How to introduce structures? L99 Hierarchical Bayesian Model
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Bayesian Interpretation

Measurement

MAP : p(x|y) =
p(y|x) p(x)∫
p(y|x)p(x)dx
p(y|x)

Measurement Likelihood: Gaussian noise model

y−Ax ∼ N (0,σ0)

Energy Prior: sparse promoting model

e.g. x ∼ Laplace(0, b)
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Bayesian Interpretation

Measurement + ℓ1 Energy

MAP : p(x|y) =
p(y|x) p(x)∫
p(y|x)p(x)dx
p(y|x) p(x)

Measurement Likelihood: Gaussian noise model

y−Ax ∼ N (0,σ0)

Energy Prior: sparse promoting model

e.g. x ∼ Laplace(0, b)

How to introduce structures? L99 Hierarchical Bayesian Model
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Bayesian Interpretation

Measurement + ℓ1 Energy + Structures?

MAP : p(x|y) =
p(y|x) p(x)∫
p(y|x)p(x)dx
p(y|x) p(x)

Measurement Likelihood: Gaussian noise model

y−Ax ∼ N (0,σ0)

Energy Prior: sparse promoting model

e.g. x ∼ Laplace(0, b)

How to introduce structures? L99 Hierarchical Bayesian Model
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Hierarchical Bayesian Model for CS

Gamma-Gaussian Model ⇝ Sparsity:

x∼ N (0,α−1)
αi ∼ Γ(a,b)

xi ∼ 1
|xi|

, as (a,b) → (0,0)

a,b c,d

αi α0

θi yi

i = 1, ..., N j = 1, ..., M

Gamma-Gaussian Model for CS

Noise tolerance, non-parametric;

but no structure prior.
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The 1st Proposed Model: CluSS-MCMC

Spike-and-slab model:

xi ∼ (1−πi)δ0 +πiN (0,α−1
i )

Pattern selection:

πi =


π

⟨0⟩
i , if Pattern (a)
π

⟨1⟩
i , if Pattern (b)
π

⟨2⟩
i , if Pattern (c)

1. Promote clusters, while
eliminate isolates.

e⟨0⟩,f ⟨0⟩ e⟨1⟩,f ⟨1⟩ e⟨2⟩,f ⟨2⟩ c,d

π
⟨0⟩
i π

⟨1⟩
i π

⟨2⟩
i

α0

θJi,K,⊙ πi

a,b
αi θi y

i= 1, ...,N
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xi ∼ (1−πi)δ0 +πiN (0,α−1
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π

⟨0⟩
i , if Pattern (a)
π

⟨1⟩
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⟨2⟩
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eliminate isolates.
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π
⟨0⟩
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⟨1⟩
i π

⟨2⟩
i

α0

θJi,K,⊙ πi

a,b
αi θi y

i= 1, ...,N

i

0 0

i

0 1

1 0
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1 1

(a) (b) (c)
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The 1st Proposed Model: CluSS-MCMC

It does introduce the cluster
structure, while ...
How to determine xi = 0?

Threshold procedure
|xi|< t: Ambiguous to
determine t;

No explicit estimators
MCMC technique is
exploited: slow.

e⟨0⟩,f ⟨0⟩ e⟨1⟩,f ⟨1⟩ e⟨2⟩,f ⟨2⟩ c,d

π
⟨0⟩
i π

⟨1⟩
i π

⟨2⟩
i

α0

θJi,K,⊙ πi

a,b
αi θi y

i= 1, ...,N

i

0 0

i

0 1

1 0

i

1 1

(a) (b) (c)

θJi,K,⊙
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The 2nd Proposed Model: CluSS-VB

Latent model:

x= w ◦z
w ∼ N (0,α−1)
zi ∼Bernoulli(πi)

Pattern selection:

πi =


π

⟨0⟩
i , if Pattern (a)
π

⟨1⟩
i , if Pattern (b)
π

⟨2⟩
i , if Pattern (c)

e⟨0⟩,f ⟨0⟩ e⟨1⟩,f ⟨1⟩ e⟨2⟩,f ⟨2⟩ c,d

π
⟨0⟩
i π

⟨1⟩
i π

⟨2⟩
i

α0

zJi πi

zi

a,b
αi wi θi y

i= 1, ...,N
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The 2nd Proposed Model: CluSS-VB

It is faster and more robust, while
not “elegant” ...
Pattern selection procedure:

Deterministic, hard
decision, lots of
parameters;

What’s next?
“Pure” statistical model:

Statistical, soft
decision, thus more
robust.

e⟨0⟩,f ⟨0⟩ e⟨1⟩,f ⟨1⟩ e⟨2⟩,f ⟨2⟩ c,d

π
⟨0⟩
i π

⟨1⟩
i π

⟨2⟩
i

α0

zJi πi

zi

a,b
αi wi θi y

i= 1, ...,N

i

0 0

i

0 1

1 0

i

1 1

(a) (b) (c)
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The 3rd Proposed Model: MBCS-LBP

Latent model:

x= w ◦z
w ∼ N (0,α−1)

e,f a,b c,d

πi αi α0

wi

zJ (i) zi
BP

θi yj

i= 1, ...,N j = 1, ...,M

Local beta process:

zj ∼Bernoulli(πi),∀zj ∈ zJ (i)

πi ∼Beta(e,f)

Sparse Signal:
i

Dependent Ele.:

Local Graphs zJ (i):
i

Beta Process: e,f

πi
zJ (i)
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The 3rd Proposed Model: MBCS-LBP

Latent model:

x= w ◦z
w ∼ N (0,α−1)

e,f a,b c,d
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θi yj
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Experiments: Setting up

Default settings

Gaussian random sensing matrix A;

Clustered ±1(or Gaussian) spikes;

Noise level σ0 = 0.02.

Benchmark

Basis Pursuit (BP);

CoSaMP, Block CoSaMP;

Bayesian CS.
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Experiments: Convergence
Evolution of variable of noise invariance σ0 = 0.02:
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CluSS-MCMC slower than CluSS-VB slower than MBCS-LBP
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Experiments: General Comparison

Clustered Gaussian
Spikes:

Signal size
N = 100;

Sparsity s= 30;

Clusters C = 2.

Measurements
M = 50.
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Experiments: Successful Reconstruction Rate
Successful reconstruction rate with clustered Gaussian spikes:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity/Measurement

S
uc

ce
ss

fu
l r

ec
ov

er
y 

ra
te

 

 
BP
Block−CoSaMP NF
CoSaMP
Bayesian CS
CluSS−VB
MBCS−LBP

Number of Clusters: C = 1 better than C = 2 better than C = 4
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Experiments: Successful Reconstruction Rate
Successful reconstruction rate with clustered ±1 spikes via CluSS-MCMC:
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图: K = 2 means C = 1, while K = 4 means C = 2.

Lei Yu (School of Electronic and Information Wuhan University)Sparse Signal Processing Master Course, 2017 63 / 135



Motivation Low-dimensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications

Experiments: Robust to Noise
Ranging noise level σ0 = 0.01⇝ 0.09:
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CluSS-MCMC v.s. CluSS-VB v.s. MBCS-LBP
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Experiments: Complexity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−2

10
−1

10
0

10
1

10
2

10
3

Sparsity/Measurement

R
un

tim
e 

(lo
g)

 

 
BP
Block−CoSaMP NF
CoSaMP
Bayesian CS
CluSS−VB
MBCS−LBP
CluSS−MCMC

Drawback
The proposed algorithms are much slower than the benchmark algorithms.
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Experiments: 2D Images

2.91dB 3.20dB −1.76dB 24.32dB

3.68dB 3.91dB −1.75dB 22.92dB

2.66dB 2.17dB −1.03dB 21.47dB

3.60dB 4.24dB −4.53dB 20.64dB

图: (1st col.) original signals, reconstructions via (2nd col.) BP, (3rd col.)
CoSaMP, (4th col.) BCS and (5th col.) MBCS-LBP.
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Dynamical Sparse Recovery with Finite-time Convergence
Recover Sparse Signals with Cucuits: A new dynamical system is
constructed by introducing the parameter α ∈ (0,1], i.e.,{

τ u̇(t) = −⌈u(t)+(ΦT Φ− I)a(t)−ΦT y⌋α

x̂(t) = a(t) (3)

with ⌈·⌋α being a function defined as ⌈·⌋α = | · |α · sgn(·) where | · |, ·,sgn are
all element-wise operators, α ∈ R+ denotes an exponential coefficient and

sgn(ω)


= 1, if ω > 0
∈ [−1,1], if ω = 0
= −1, if ω < 0

.

L. Yu, G. Zheng and J. P. Barbot, "Dynamical Sparse Recovery With Finite-Time Convergence," in IEEE Transactions on
Signal Processing, vol. 65, no. 23, pp. 6146-6157, Dec.1, 1 2017.
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Dynamical Sparse Recovery

Optimization of sparse representation problem:

x∗ = arg min
x∈RN

1
2

∥y−Φx∥2
2 +λψ(x) (4)

and typically, the sparsity-inducing term ψ(x) = ∥x∥1 ≜
∑

i

|xi| and λ > 0

is the balancing parameter.

Theorem
If sensing matrix satisfies RIP, the state u(t) of (3) converges in finite time
to its equilibrium point u∗, and x̂(t) of (3) converges in finite-time to x of
(4).
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Dynamical Sparse Recovery

Convergence Speed:
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图: Evolutions of state error ũ(t) and the number of active nodes with
respect to time.
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Dynamical Sparse Recovery

Tracking ability:
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图: Estimation of time-varying sparse signals via LCA and the proposed
system.
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Dynamical Sparse Recovery

Working with Jiang Yulun.
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Learning to Recover Sparse Signals

The canonical form of compressive sensing

y = Ax +e

y ∈ RM is the measurement vector

A ∈ RM×N is a random sensing matrix with M ≪N satisfying the
so-called RIP

x ∈ RN is the original sparse signal needed to be recovered with no
more than K (K <M) nonzero elements

e is the error term consists of the possible noise and perturbations

Lei Yu (School of Electronic and Information Wuhan University)Sparse Signal Processing Master Course, 2017 73 / 135



Motivation Low-dimensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications

Orthogonal Matching Pursuit

Algorithm 1 Orthogonal Matching Pursuit
Input: the sensing matrix A ∈ RM×N , the measurement y ∈ RM , sparsity K

Output: the recovered sparse signal x ∈ RN

1: Initialize r0 = y, ΛΛΛ0 = ∅, A0 = ∅, t= 1

2: λλλt = arg max
j=1,2,...,N

|< rt−1,aj > |

3: ΛΛΛt = ΛΛΛt−1 ∪λλλt, At = At−1 ∪aλλλt

4: x̂t = argmin
xt

∥y−Axt∥

5: rt = y−Atx̂t

6: t= t+1, if t < K continue to 2, else goto 7

7: Output x̂t
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Structure Information

In reality, besides the sparsity property, the elements of sparse signals
usually follow a certain structure which could be utilized to improve the
recovery performance.

block-sparse: block-based CoSaMP, block-sparse Bayesian learning

tree-structure: TSW-CS

uniform-sparse
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Our Algorithm

Instead of searching indices of nonzero elements by solving a maximization
problem in OMP algorithm, we replace this step with learning approaches.

Flow diagram of the proposed algorithm

Working with Lv Chengcheng.
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Block-Sparse Signals
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Block-Sparse Signals
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Block-Sparse Signals
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Block-Sparse Signals
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Block-Sparse Signals

Average NMSE on different MNIST digit test images

digit 1 3 5 7 9
CluSS 0.288 0.250 0.254 0.295 0.341

MBCS-LBP 0.344 0.249 0.268 0.328 0.292
PCSBL 0.310 0.223 0.234 0.311 0.289
EBSBL 0.537 0.373 0.339 0.444 0.525

SSSR-LSTM 0.150 0.194 0.186 0.190 0.161
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Tree-Struture Signals

Original TSW-CS SSSR-LSTM
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Uniform-Sparse Signals
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Uniform-Sparse Signals
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Biology
微管 (英语：Microtubule) 是细胞骨架的一个组成部分，可以在整个细胞
质中找到。微管蛋白的这些管状聚合物可以增长长达 50 微米，具有 25
微米的平均长度，并且是高度动态的。微管的外径约为 24 纳米，而内
直径为约 12 纳米。

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent
Probes, Science 317 1749-1753 (2007)
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Biology

M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
Nature Methods 3 793-795 (2006)
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MRI
Motivation: MRI

“In 2005, the U.S. spent 16% of its GDP on health care. It is projected that
this will reach 20% by 2015.” Goal: Individualized treatments based on
low-cost and e↵ective medical devices.

End!Users
Image

Formation

Image

Processing

Pier Luigi Dragotti
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MRI
MRI measurements is gathered from transform space (K-space):

bbbi =
∫

x
γ(x)exp(−jkT

i x)dx+ni

bbbi Samples in i-th channel

γ(x) MRI image in time space (to be recovered)

ni Noise in i-th channel

Concise model
bbb= A(γ)+nnn

MRI reconstruction exploiting sparsity

γ∗ = argmin
γ

∥bbb−A(γ)∥2
2 +λ∥Ψ(γ)∥1
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Sparse MRI
Compressed Sensing MRI 1183

from a small number of measurements, and still reconstruct
the same image which would arise from the fully sampled
set? Furthermore, since MRI measures Fourier coefficients,
and not pixels, wavelet, or DCT coefficients, the question
is whether it is possible to do the above by measuring only
a subset of k-space.

A substantial body of mathematical theory has recently
been published establishing the possibility to do exactly
this. The formal results can be found by searching for
the phrases compressed sensing (CS) or compressive sam-
pling (14,15). According to these mathematical results,
if the underlying image exhibits transform sparsity, and
if k-space undersampling results in incoherent artifacts
in that transform domain, then the image can be recov-
ered from randomly undersampled frequency domain
data, provided an appropriate nonlinear recovery scheme
is used.

In this article we aim to develop a framework for using
CS in MRI. To keep the discussion as short and simple
as possible, we focus this work only on Cartesian sam-
pling. Since most product pulse sequences in the clinic
today are Cartesian, the impact of Cartesian CS can be sub-
stantial. We keep in mind though, that non-Cartesian CS
has great potential and may be even more advantageous
than Cartesian for some applications. Some very promising
results for radial and spiral imaging have been presented
by (17–21).

THEORY

Compressed Sensing

CS was first proposed in the literature of Information
Theory and Approximation Theory in an abstract general
setting. One measures a small number of random linear
combinations of the signal values–much smaller than the
number of signal samples nominally defining it. The signal
is reconstructed with good accuracy from these measure-
ments by a nonlinear procedure. In MRI we look at a special
case of CS, where the sampled linear combinations are
simply individual Fourier coefficients (k-space samples).
In that setting, CS is claimed to be able to make accurate
reconstructions from a small subset of k-space rather than
an entire k-space grid.

The CS approach requires that: (a) the desired image have
a sparse representation in a known transform domain (i.e.,
is compressible), (b) the aliasing artifacts due to k-space
undersampling be incoherent (noise like) in that trans-
form domain. (c) a nonlinear reconstruction be used to
enforce both sparsity of the image representation and con-
sistency with the acquired data. To help keep in mind
these ingredients, consider Fig. 1, which depicts relation-
ships among some of these main concepts. It shows the
image, the k-space and the transform domains, and the
operators connecting these domains and the requirements
for CS.

A Simple, Intuitive Example of Compressed Sensing

To get intuition for the importance of incoherence and
the feasibility of CS in MRI, consider the example in
Fig. 2. A sparse 1D signal (Fig. 2a), 256 samples long, is

FIG. 1. Illustration of the domains and operators used in the paper
as well as the requirements of CS: sparsity in the transform domain,
incoherence of the undersampling artifacts, and the need for non-
linear reconstruction that enforces sparsity. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]

undersampled in k-space (Fig. 2b) by a factor of eight. Here,
the sparse transform is simply the identity. Later, we will
consider the case where the transform is nontrivial.

Equispaced k-space undersampling and reconstruction
by zero-filling results in coherent aliasing, a superposition
of shifted replicas of the signal as illustrated in Fig. 2c. In
this case, there is an inherent ambiguity; it is not possible
to distinguish between the original signal and its replicas,
as they are all equally likely.

Random undersampling results in a very different
situation. The zero-filling Fourier reconstruction exhibits
incoherent artifacts that actually behave much like additive
random noise (Fig. 2d). Despite appearances, the artifacts
are not noise; rather, undersampling causes leakage of
energy away from each individual nonzero coefficient of
the original signal. This energy appears in other recon-
structed signal coefficients, including those which had
been zero in the original signal.

It is possible, if all the underlying original signal coef-
ficients are known, to calculate this leakage analytically.

1184 Lustig et al.

FIG. 2. An intuitive reconstruction of a sparse signal from pseudo-
random k -space undersampling. A sparse signal (a) is 8-fold
undersampled in k -space (b). Equispaced undersampling results in
coherent signal aliasing (c) that cannot be recovered. Pseudo-random
undersampling results in incoherent aliasing (c). Strong signal com-
ponents stick above the interference, are detected (e) and recovered
(f) by thresholding. The interference of these components is com-
puted (g) and subtracted (h), lowering the total interference level
and enabling recovery of weaker components. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]

This observation enables the signal in Fig. 2d to be accu-
rately recovered although it was 8-fold undersampled.
An intuitive plausible recovery procedure is illustrated in
Fig. 2e–h. It is based on thresholding, recovering the strong
components, and calculating the interference caused by
them and subtracting it. Subtracting the interference of the
strong components reduces the total interference level and
enables recovery of weaker, previously submerged com-
ponents. By iteratively repeating this procedure, one can
recover the rest of the signal components. A recovery pro-
cedure along these lines was proposed by Donoho et al.
(Sparse Solution of Underdetermined Linear Equations by
Stagewise Orthogonal Matching Pursuit, 2006, Stanford
University, Statistics Department, technical report #2006-
02) as a fast approximate algorithm for CS reconstruction.
A similar approach of recovery of MR images was proposed
in Ref. (22).

Sparsity

Sparsifying Transform

A sparsifying transform is an operator mapping a vector of
image data to a sparse vector. In recent years, there has been
extensive research in sparse image representation. As a
result, we currently possess a library of diverse transforma-
tions that can sparsify many different type of images (23).

For example, piecewise constant images can be sparsely
represented by spatial finite-differences (i.e, comput-
ing the differences between neighboring pixels); indeed,
away from boundaries, the differences vanish. Real-life
MR images are of course not piecewise smooth. But in
some problems, where boundaries are the most important
information (angiograms for example) computing finite-
differences results in a sparse representation.

Natural, real-life images are known to be sparse in the
discrete cosine transform (DCT) and wavelet transform
domains (16). The DCT is central to the JPEG image com-
pression standard and MPEG video compression, and is
used billions of times daily to represent images and videos.
The wavelet transform is used in the JPEG-2000 image
compression standard (16). The wavelet transform is a mul-
tiscale representation of the image. Coarse-scale wavelet
coefficients represent the low resolution image compo-
nents and fine-scale wavelet coefficients represent high
resolution components. Each wavelet coefficient carries
both spatial position and spatial frequency information
at the same time (see top Fig. 4b for a spatial position
and spatial frequency illustrations of a mid-scale wavelet
coefficient).

Since computing finite-differences of images is a high-
pass filtering operation, the finite-differences transform can
also be considered as computing some sort of fine-scale
wavelet transform (without computing coarser scales).

Sparsity is not limited only to the spatial domain.
Dynamic images are extremely sparse in the temporal
dimension. Dynamic sparsity is beyond our scope; some
preliminary results of dynamic CS imaging are reported in
Refs. (24) and (25).

The Sparsity of MR Images

The transform sparsity of MR images can be demonstrated
by applying a sparsifying transform to a fully sampled
image and reconstructing an approximation to the image
from a subset of the largest transform coefficients. The spar-
sity of the image is the percentage of transform coefficients
sufficient for diagnostic-quality reconstruction. Of course
the term “diagnostic quality” is subjective. Nevertheless,
for specific applications, it is possible to get an empirical
sparsity estimate by performing a clinical trial and eval-
uating reconstructions of many images quantitatively or
qualitatively.

To illustrate this, we performed such an experiment on
two representative MR images: an angiogram of a leg and a
brain image. The images were transformed by each trans-
form of interest and reconstructed from several subsets of
the largest transform coefficients. The results are depicted
in Fig. 3. The left column images show the magnitude
of the transform coefficients; they illustrate that indeed
the transform coefficients are sparser than the images

Lustig, M., Donoho, D., & Pauly, J. M. (2007). Sparse MRI: The application of compressed sensing for rapid MR
imaging. Magnetic resonance in medicine, 58(6), 1182-1195.
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Sparse MRI

1188 Lustig et al.

FIG. 5. Transform point spread function (TPSF) analysis in the wavelet domain. The k -space sampling patterns and the associated TPSF
of coarse-scale and fine-scale wavelet coefficients are shown. (a) Random phase encode undersampling spreads the interference only in 1D
and mostly within the same wavelet scale. The result is relatively high peak interference. (b) Sampling differently for each slice, i.e., randomly
undersampling the ky − z plane causes the interference to spread to nearby slices and to other wavelets scales and reduces its peak value.
(c) Undersampling the phase encode plane, i.e., ky − kz spreads the interference in 2D and results in the lowest peak interference. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIG. 6. Simulation: Reconstruction artifacts as a function of acceleration. The LR reconstructions exhibit diffused boundaries and loss of
small features. The ZF-w/dc reconstructions exhibit an significant increase of apparent noise due to incoherent aliasing, the apparent noise
appears more “white” with variable density sampling. The CS reconstructions exhibit perfect reconstruction at 8- and 12-fold (only var. dens.)
accelerations. With increased acceleration there is loss of low-contrast features and not the usual loss of resolution. The reconstructions from
variable density random undersampling significantly outperforms the reconstructions from uniform density random undersampling. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Sparse MRI
Compressed Sensing MRI 1191

FIG. 8. Multislice 2DFT fast spin echo
CS at 2.4 acceleration. (a) The CS-wavelet
reconstruction exhibits significant resolution
improvement over LR and significant sup-
pression of the aliasing artifacts over ZF-w/dc
compared to the full Nyquist sampling. (b) CS
wavelet reconstructions from several under-
sampling schemes. The multi-slice approach
outperforms the single-slice approach and
variable density undersampling outperforms
uniform undersampling. (c) The associated
undersampling schemes; variable density
(top) and uniform density (bottom), single-
slice (left) and multi-slice (right).

the ZF-w/dc and LR linear reconstructions. To compen-
sate for the fractional echo, a Homodyne partial-Fourier
reconstruction (6) was performed in the readout direction.

RESULTS

Simulation: CS Reconstruction Performance and
Reconstruction Artifacts with Increased Undersampling

Figure 6 presents the simulation results. The LR recon-
struction, as expected, shows a decrease in resolution with
acceleration characterized by loss of small structures and
diffused boundaries. The ZF-w/dc reconstructions exhibit
a decrease in apparent SNR because of the incoherent
interference, which completely obscures small and dim
features. The uniform density undersampling interference
is significantly larger and more structured than the vari-
able density. In both ZF-w/dc reconstructions the features
that are brighter than the interference appear to have well-
defined boundaries. In the CS reconstructions, at 8-fold
acceleration (approximately 3 times more Fourier samples
than sparse coefficients) we get exact recovery from both

uniform density and variable density undersampling! At
12-fold acceleration (approximately 2 times more Fourier
samples than sparse coefficients) we still get exact recov-
ery from the variable density undersampling, but lose
some of the low-contrast features in the uniform density
undersampling. At 20-fold acceleration (similar number
of Fourier samples as sparse coefficients) we get loss of
image features in both reconstructions. The reconstruction
errors are severe from the uniform density undersam-
pling. However, in reconstruction from the variable density
undersampling, only the weak intensity objects have recon-
struction errors; the bright, high contrast features are well
reconstructed.

2DFT CS Reconstruction in the Presence of Noise

Figure 7 presents the reconstruction results. Figure 7a
shows the reconstruction of a fully sampled phantom
scan. The measured SNR is 6.17. The ZF-w/dc reconstruc-
tion result in Fig. 7b exhibits significant apparent noise
in the image with measured SNR of 3.79. The apparent
noise is mostly incoherent aliasing artifacts due to the
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Dynamic MRI exploiting Sparsity and Low-rank
Lowrank in x− t spaceLINGALA et al.: ACCELERATED DYNAMIC MRI EXPLOITING SPARSITY AND LOW-RANK STRUCTURE: K-T SLR 1043

Fig. 1. Utility of KLT in compactly representing the dynamic image time series: The numerical simulation of breath held cine data (top row) and ungated free
breathing data (bottom row), along with their corresponding representations in the and KLT spaces are shown. The space coefficients are highly
sparse/structured in the context of breath-held acquisitions due to the pseudo-periodic nature of heartbeats. The structure and sparsity of the space is disturbed
in the presence of breathing motion. In contrast, the free breathing data is compact in the KLT space. The few significant singular values implies that the dataset
can be efficiently approximated as a low rank matrix, described by (1). (a) . (b) . (c) . (d) . (e) First few singular values.

acceleration factor, resulting in significant spatial aliasing
artifacts.

We propose a novel algorithm to significantly accelerate dy-
namic MRI by exploiting the correlations between the temporal
profiles of the voxels. In contrast to the classical KLT-based
schemes that use the above two-step approach [9]–[12], we pro-
pose to simultaneously estimate the temporal basis functions
and its spatial weights directly from the entire k-t space data.
This approach is enabled by the reinterpretation of the KLT
based reconstruction as a spectrally regularized matrix recovery
scheme. Specifically, we pose the joint estimation of the bases
and the signal as the recovery of a low-rank matrix, obtained
by stacking the temporal dynamics of the voxels, from the mea-
sured data. This approach provides more accurate estimates of
the temporal basis functions and hence result in reconstructions
with better quality at a specified acceleration.

The recovery of a low-rank matrix using nuclear norm min-
imization has been rigorously studied by several researchers
[13]–[16]. Motivated by the recent results in the use of non-
convex penalties in compressed sensing [17], [18], we introduce
novel nonconvex spectral penalties to minimize the number of
measurements required to recover a low-rank matrix. By sup-
pressing the singular vectors that correspond to aliasing arti-
facts, this approach can considerably improve the reconstruc-
tions. Moreover, the images in dynamic time series themselves
can be assumed to have sparse wavelet coefficients or gradi-
ents. We propose to additionally exploit the sparsity of the ma-
trix in predetermined domains to further improve the recovery
rate. Since the degrees of freedom in representing sparse and
low-rank matrices are significantly lower than the class of arbi-
trary low-rank matrices, this approach enables us to improve the
recovery rate. We do not promote joint sparsity as done in [19].
In our work, the temporal basis functions themselves are not
constrained to be sparse in any bases; enforcing the sparsity in a

specified space (e.g., Fourier) may introduce significant bias in
the presence of motion (and/or perfusion) (see Fig. 1). More-
over, we observe that different temporal basis functions play
dominant roles in different spatial regions. Since the sparsity
properties of these functions may be very different, we expect
the use of joint sparsity penalty to smooth subtle motion/perfu-
sion induced variations.

The preliminary version of this work was reported in our con-
ference paper [20]. The work of Haldar et al. [21], which was
also published in the same proceedings, is conceptually similar
to the proposed scheme. However, they do not use sparsity priors
and their optimization scheme is drastically different from the
proposed scheme.

Most of the existing convex matrix recovery algorithms are
based on iterative singular value thresholding [14], [22], [23].
Since it is not straightforward to extend these schemes to our
problem with both sparsity and low-rank penalties, we intro-
duce a novel variable splitting algorithm for the fast minimiza-
tion of the optimization criterion. This approach is the general-
ization of similar algorithms used for total variation minimiza-
tion [24], [25] to matrix recovery. We demonstrate the utility of
the proposed scheme in the context of clinical cardiac perfusion
MRI. Validations using numerical phantoms and in vivo data
demonstrate the significant improvement in performance over
state of the art methods. Although we focus on cardiac perfu-
sion imaging in this paper, the algorithm is readily applicable to
most dynamic MRI applications.

II. BACKGROUND

A. Dynamic MRI Using KLT

We denote the spatio-temporal signal as , where is
the spatial location and denotes time. The dynamic MRI mea-
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Dynamic MRI exploiting Sparsity and Low-rank

MRI measurements in k− t space

bbbi =
∫

x
γ(x,t)exp(−jkT

i x)dx+ni

Samples in k− t space form a matrix
Γ = [γ(x,t0),γ(x,t1), ...,γ(x,tn−1)]

bbb= A(Γ)+n

Dynamic MRI exploiting Low-rank and Sparsity

Γ∗ = argmin∥A(Γ)− bbb∥2
2 +λ1ϕ(Γ)+λ2ψ(Γ)

S. G. Lingala, Y. Hu, E. DiBella and M. Jacob, "Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure:
k-t SLR," in IEEE Transactions on Medical Imaging, vol. 30, no. 5, pp. 1042-1054, May 2011.
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Fig. 8. Comparisons on in vivo data: The first column shows the reconstructions of the fully sampled data. Columns 2–6 show the reconstructions using the
best two-step KLT scheme, k-t FOCUSS method, spectrally regularized (only low rank prior), TV regularized (only sparsity prior), and the k-t SLR scheme,
respectively. We choose for all the methods except the two-step KLT, which is at an acceleration of . We studied several two-step KLT
schemes (see Fig. 5) with different number of phase encodes in the training data and picked the one with the best SER. Rows (a), (b), and (c), respectively, show
a frame at peak LV uptake, peak myocardial uptake and postcontrast during breathing. The row (d) shows the image time series plot corresponding to the arrow
in (c); the location of (a)–(c) are also marked in (d). Rows (e) and (f) respectively show the averaged signal intensity of the blood pool and myo-caridal regions
[denoted in (b)] for the registered reconstructions overlaid on the registered fully sampled data. We observe that the reconstructions with the two-step KLT scheme
exhibit significant spatial aliasing due to which the time series in [(e) and (f)] are inaccurate. The k-t FOCUSS reconstructions exhibit significant shape distortions
and motion inaccuracies. These artifacts can be appreciated from the time series plots in (d)–(f), shown in the third column. The spectrally regularized scheme with
only the low rank constraint has residual aliasing artifacts as pointed by the arrows in (a), fourth column. This has smoothing along time as well, which can be seen
from smoothening of the perfusion peaks in (e) and (f) in the fourth column. The TV penalty based scheme has over spatial smoothing and blurring of important
structures like the myocardium (see (b), fifth column), due to which the myocardial time series are inaccurate as seen in (f), fifth column. In contrast, k-t SLR in
the last column provides efficient reconstructions, with good correlations of the blood and myocardial region time series with the fully sampled data.

From our results, it is observed that using spectral penalty
alone results in significant aliasing artifacts, while the use of TV
penalty alone results in considerable spatial smoothing. By con-
straining the reconstructions, the proposed scheme is capable
of providing improved reconstructions. In our results, we ob-
serve that the performance of the TV scheme is comparable to
that of k-t SLR at lower accelerations. However, the SER of the
TV scheme drops significantly at higher accelerations due to ex-
cessive spatial smoothing. This behavior is reported by earlier
myocardial perfusion MRI schemes that only rely on the TV
penalty [42].

In this work, the trade-off between the problem fidelity and
convergence rate in the variable splitting strategy is addressed
by the use of a continuation scheme. The continuation scheme
can have some numerical instabilities at high values of .
To address this instability, we plan to investigate an augmented
Lagrangian strategy as proposed in [43] in the future.

We considered the reconstruction of perfusion dynamics from
a single slice of the heart in this paper. We expect to obtain sig-
nificantly improved results by jointly recovering multiple slices
from 3-D k-space acquisitions. The main reason is the signifi-
cant redundancy in the temporal profiles between slices, which
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Radar with Sparsity

estimated model parameters for (three-dimensional) posi-
tion, orientation, length (azimuth response), and polari-
zation. For visualization, a faceted model of the actual
vehicle is superimposed in the figure. The apparent points
of reflection for the multipath contributions (even bounce
polarization is shown in red) are along the dihedral crease
formed by the intersecting planes of the asphalt surface
and vehicle side panel.

Similarly, wide-area low-resolution images with many
reflectors resident in each pixel are typically compressible
in a suitable basis. In Fig. 1(c), the urban scene imaged
using the MiniSAR system1 can be transform encoded with
20 : 1 compression and less than 2% squared error. Image
texture, especially shadow, can be critical for many infer-
ence problems; moreover, phase in the complex-valued
image can reveal diffraction and closely spaced reflectors
[22], [23]. Thus, radar images are compressible using
either parametric models of physical scattering behaviors
or transform coding.

B. Algorithms for Sparse Linear Regression
At least three classes of algorithms appear in both CS

performance guarantees and existing radar applications.
The algorithms may be viewed as attempts to exploit the
sparsity, or compressibility, of the scene reflectivity in
order to regularize an otherwise ill-posed linear inverse
problem. The first class uses ‘p-norm regularization; the
second class comprises fast greedy heuristics; and the third
class uses iteratively reweighted ‘2 minimizations to
approximate the ‘1 minimization. We briefly survey these
three approaches.

First, linear inversion and deconvolution with ‘p-
penalized least squares have a long history [24]–[26]. In
this class of approaches, parameters are found via the
optimization

f̂ ¼ arg min
f
kAf " yk2

2 þ !kfk
p
p: (17)

For p $ 1, (17) is equivalent to the dual formulation in (2)

f̂ ¼ arg min
f
kfkp

p subject to kAf " yk2
2 % "

2

for appropriate choice of !. The large class of imaging
methods adopting (17) may be interpreted as providing the
Bayesian maximum posterior probability (MAP) estimate
of f under a sparsity inducing prior [27]

pðf Þ / exp "#kfkp
p

n o
(18)

where ! ¼ 2$2# and $2 denotes the variance of the
assumed additive white Gaussian measurement noise. For
p ¼ 1, (17) is the convex relaxation of the minimum ‘0

problem; CS manuscripts have established sufficient con-
ditions on the level of sparsity, noncoherence of the re-
gressors, and number of measurements to ensure stable
reconstruction, e.g., [1], [2], [4], [6], and [28]. For ex-
tension to p G 1, see [29].

The p ¼ 1 regularization was advocated for radar imag-
ing in [30]. Applications to radar imaging for 0 G p % 1
and for a total variation norm on pixel magnitudes were
introduced in [31], with extension to passive radar for
multiple transmitters in [32]. The algorithm in [31] em-
ploys an approximate Hessian and uses conjugate gradients
with a Toeplitz embedding of the Gram matrix AHA; a
majorization-minimization approach [33] yields the same
iterative algorithm. Direct application of conjugate
gradients to (17) was presented in [34].

A second class of algorithms contains various greedy
approaches with low computational complexity. Greedy
algorithms in array processing date at least to a heuristic
iterative deconvolution algorithm known as CLEAN,
which was introduced in 1974 [35] and is equivalent to
matching pursuits [36]. Examples of subsequent variations
for radar include frequency-dependent basis functions
[30], [37] and a modified tree search [38]. Orthogonal1http://www.sandia.gov/.

Fig. 1. Radar images are compressible. (a) Matched filter three-dimensional image. (b) Nonlinear regression can yield a parsimonious

representation of reflectors. (c) Radar image collected using MiniSAR demonstrating the compressibility of radar scenes.
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limited in some sense. Examples include multistatic
passive sensing, data with frequency-band omissions, and
three-dimensional imaging. Sparsity-driven imaging based
on ‘p-norms has been extended to and applied in such
scenarios [21], [32], [79], [80]. Sample results are shown
in Fig. 2(c) and (d). The common observation is that
sparsity-driven images exhibit fewer artifacts than con-
ventional images.

B. Anisotropic Scattering
Isotropic point scattering is an idealized mathematical

abstraction that becomes untenable for wide-angle aper-
tures. Thus, wide-angle imaging invites reconstruction of
scene reflectivity as a function of both position and viewing

angle. Sparse reconstruction approaches have been offered
for wide-angle imaging and differ in the assumed structure
of scattering behavior versus azimuth angle.

The work in [79] and [80] assumes local isotropy and
no further structure; an aperture is split into subapertures
on which the isotropic scattering is assumed, and a sparse
reconstruction is computed on each subaperture. The
subaperture images are reported as either a sequence of
angle-indexed images or as a single composite. Alterna-
tively, angular dependence is assumed piece-wise constant
in [81], leading to a mixed-norm version of (19): a total
variation norm is applied in angle, and an ‘p norm is
applied in the spatial dimensions.

In [82], an overcomplete dictionary is adopted within a
sparse representation framework by assuming a sinc-like
angular response and approximating it with a constant
response over the main lobe. Thus, for each spatial location,
the dictionary contains contiguous angular responses of
prescribed extents and quantized center directions. For
computational tractability, a tree structure of the dictionary
is used to develop a fast greedy search. A sample result is
shown in Fig. 3. The algorithm produces an estimate of the
angular scattering function at each pixel of interest.
Fig. 3(c) and (d) shows the selected azimuth responses at
two particular pixels. The approach extends a generalized
likelihood ratio test for sinc-like angular responses [83] to
exploit the sparsity of bright reflectors.

C. Joint Sparsity
Many imaging radars use data from multiple channels;

these can be SAR data collected at multiple elevations,
multiple polarizations, multiple phase-centers, or multiple
frequency bands. As before, the convolution of the point
spread function gives rise to a linear model for each

Fig. 3. Joint imaging and angular anisotropy characterization through

sparse representations based on the backhoe data. (a) Illustration of

the scene. (b) 75 spatial locations of interest shaded according to

maximum magnitude. (c) and (d) Aspect-dependent scattering solution

for two example spatial locations. (Used with permission [82].)

Fig. 2. SAR imaging examples. (Left) Conventional imaging and

(right) ‘p-norm-based reconstruction. (a) MSTAR example with sparsity

imposed on reflection coefficients [31]. (b) MSTAR example

with sparsity imposed on reflectivity gradients [31].

(c) Passive radar imaging example [32]. (d) Backhoe data

(see https://www.sdms.afrl.af.mil/main.php) example for wide-angle

imaging aperture of 110!.
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in Fig. 2(c) and (d). The common observation is that
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Image Restoration

Image restoration is one of the most important and basic areas in
image processing.

Model

Y =HX+N

Y — Observed image
H — Degraded operator
X — Original image
N — Additive noise

Different image restoration problem corresponds to different type of
H.
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Image Denoising

When H is the identity matrix.

(a) Noisy (b) Denoising Result
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Image Deblurring

When H is the convolution operator.

(a) Blurred Image (b) Deblurred Result
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Image Inpainting
When H is the restriction operator.

(a) Miss 80 % pixels (b) Inpainting Result
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Image Inpainting

When H is the restriction operator.

(a) Corrupted by Text (b) Text Removal Result
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Image Super-Resolution

When H is the downsampling operator.

(a) LR (b) Interpolated by Bicubic (c) Reconstruction based SR
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Deblurring Results

(a) Blurred Image (b) Reference 2,
PSNR=26.36

(c) Reference 7,
PSNR=25.32

(d) Reference 8,
PSNR=28.65

[8] Dong W, Zhang L, Shi G, et al. Nonlocally centralized sparse representation for image restoration. IEEE Transactions
on Image Processing, 2013, 22(4): 1620-1630.
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Denoising Results

(a) Noisy Image (b) Reference 9,
PSNR=27.74

(c) Reference 8,
PSNR=28.90

[9] Cai J F, Ji H, Shen Z, et al. Data-driven tight frame construction and image denoising. Applied and Computational
Harmonic Analysis, 2014, 37(1): 89-105.
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Super-Resolution Results

(a) LR (b) Reference 8,
PSNR=31.28

(c) Reference 6,
PSNR=31.66
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K-SVD

min
DDD,,,AAA

∥XXX−DDDAAA∥F s.t. ∥AAA∥0 ≤K

Step 1. Update Sparse coefficients.

min
AAA

∥XXX−DDDAAA∥F s.t. ∥AAA∥0 ≤K

OMP algorithm to solve above problem

Step 2. Update Dictionary atoms.
min

DDD
∥XXX−DDDAAA∥F

apply SVD to update one atom at a time

Alternate two steps until object function converges
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Block Matching and 3-D filtering (BM3D)
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Learned Simultaneous Sparse Coding (LSSC)

min
(AAAi)n

i=1,DDD∈C

n∑
i=1

∥AAAi∥p,q

|Si|p
s.t. ∀i

∑
j∈Si

∥∥∥yyyj −DDDαααij

∥∥∥2

2
≤ ϵi

Step 1 :Patch Grouping
Stacking similar patches to obtain Si.

Step 2 :Update Dictionary
Set p= 1, q = 2. Using Online dictionary learning to obtain DDD.

Step 3 :Update Sparse Coefficients
Set p= 0, q = ∞. Using OMP to update AAAi

Alternate above steps until object function converges
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Group-Based Sparse Representation (GSR)

min
DDDx,αααGk

n∑
k=1

∥XXXGk
−DDDxαααGk

∥2
2 +λ

n∑
k=1

∥αααGk
∥0

Construct 3D groups to stack similar patches. Meanwhile, dictionary and
coefficients matrix are both 3D.

Solving above problem using alternately update dictionary and coefficients
matrix.
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Results

(a) Noisy Image (b) KSVD(PSNR=27.86) (c) BM3D(PSNR=29.05)

(d) Blurred Image (e) BM3D(PSNR=27.66) (f) GSR(PSNR=27.77)
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Image Rectification with Low-Rank and Sparsity
Images with regular patterns have low-rank property2 Zhengdong Zhang, Xiao Liang, Arvind Ganesh, Yi Ma

(a) Input (r = 35) (b) Input (r = 15) (c) Input (r = 53) (d) Input (r = 13)

(e) Output (r = 14) (f) Output (r = 8) (g) Output (r = 19) (h) Output (r = 6)

Fig. 1. Low-rank Textures Automatically TILTed. From left to right: a butterfly;
a face; a tablet of Chinese characters; and the Leaning Tower of Pisa. Top: windows
with the red border are the original input, windows with the green border deformed
texture returned by our method; Bottom: textures in the green window are matrices
of much lower rank.

a�ne transform, projective transform becomes necessary to describe the defor-
mation of a large region viewed through a perspective camera. To the best of
our knowledge, from a practical standpoint, there are no feature descriptors that
are truly invariant (or even approximately so) under projective transformations
or homographies.

Despite tremendous e↵ort in the past few decades to search for better and
richer classes of invariant features in images, there seems to be a fundamental
dilemma that none of the existing methods have been able to resolve ultimately:
On the one hand, if we consider typical classes of transformations incurred on
the image domain by changing camera viewpoint and on the image intensity by
changing contrast or illumination, then in strict mathematical sense, invariants
of the 2D image are extremely sparse and scarce – essentially only the topology
of the extrema of the image function remains invariant, known as attributed
Reeb tree (ART) [6]. The numerous “invariant” image features proposed in the
vision literature, including the ones mentioned above, are at best approximately
invariant, and often only to a limited extent. On the other hand, the 3D scene is
typically rich of regular structures that are full of invariants (with respect to 3D
Euclidean transformations). For instance, in an urban environment, the scene
is typically filled with man-made objects that have parallel edges, right angles,
regular shapes, symmetric structures, and repeated patterns. These geometric
structures are rich of properties that are invariant under all types of subgroups
of the 3D Euclidean group and as a result, their 2D (a�ne or perspective) images
encode extremely rich 3D information about objects in the scene [7–9].

In this paper we propose a technique that aims to resolve the above dilemma
about invariant features. We contend that instead of trying to seek invariants of
the image that are either scarce or imprecise, we should

aim to directly detect and extract invariant structures of a scene through
their images despite (a�ne or projective) domain transforms.

TILT: Transform Invariant Low-rank Textures 5

(a) Input(r = 11) (b) Input(r = 16) (c) Input(r = 10) (d) Input(r = 24)

(e) Output(r = 1) (f) Output(r = 2) (g) Output(r = 7) (h) Output(r = 14)

Fig. 2. Representative examples of low-rank textures. From left to right: an
edge; a corner; a symmetric pattern, and a license plate. Top: deformed textures (high-
rank as matrices); Bottom: the recovered low-rank textures.

texture function are subject to many types of corruption such as quantization,
noise, occlusions, etc. In order to correctly extract the intrinsic low-rank textures
from such deformed and corrupted image measurements, we must first carefully
model those factors and then seek ways to eliminate them.

Deformed Low-rank Textures. Although many surfaces or structures in 3D ex-
hibit low-rank textures, their images do not! If we assume that such a texture
I

0(x, y) lies approximately on a planar surface in the scene, the image I(x, y)
that we observe from a certain viewpoint is a transformed version of the original
low-rank texture function I

0(x, y):

I(x, y) = I

0 � ⌧�1(x, y) = I

0
�
⌧

�1(x, y)
�

where ⌧ : R2 ! R2 belongs to a certain Lie group G. In this paper, we assume
G is either the 2D a�ne group A↵(2) or the homography group GL(3) acting
linearly on the image domain.2 In general, the transformed texture I(x, y) as a
matrix is no longer low-rank. For instance, a horizontal edge has rank one, but
when rotated by 45�, it becomes a full-rank diagonal edge (see Figure 2(a)).

Corrupted Low-rank Textures. In addition to domain transformations, the ob-
served image of the texture might be corrupted by noise and occlusions or contain
some surrounding backgrounds. We can model such deviations as:

I = I

0 + E

for some error matrix E. As a result, the image I is potentially no longer a low-
rank texture. In this paper, we assume that only a small fraction of the image
pixels are corrupted by large errors, and hence, E is a sparse matrix.

Our goal in this paper is to recover the exact low-rank texture I

0 from an
image that contains a deformed and corrupted version of it. More precisely, we
aim to solve the following problem:

2 Nevertheless, in principle, our method works for more general classes of domain
deformations or camera projection models as long as they can be modeled well by a
finite-dimensional parametric family.
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Image Rectification with Low-rank and Sparsity
TILT (Transform Invariant Low-rank Textures) model:

I ◦ τ = I0 +E

I0 Rectified low-rank image

E Sparse error

τ Image transform operator (nonlinear)

����!3�!2kTJ
�
���

1{H���9īĴ�

τ − =

I τ I τo − =E 0I

( )0

0 0
0, ,

min . .
I E

rank I E s t I I E
τ

ξ τ+ = +o

0

0 0
1, ,

min . .
I E

I E s t I I E
τ

ξ τ
∗
+ = +o

Convex RelaxationÁ

ì�9é´�

0

0 0
1, ,

min . .
I E

I E s t I J I E
τ

ξ τ τ
∗
+ + Δ = +o

13/26

NP-hard

'�9īĴ, 5�z�Ą

TILTMp�oK�?

Rectifying images via optimization:
min

I0,E,∆τ
∥I0∥∗ +λ∥E∥1, s.t. I ◦ τ +∇I∆τ = I0 +E
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Image Rectification with Low-rank and Sparsity
TILT: Transform Invariant Low-rank Textures 9

Algorithm 1 (TILT via ALM)

Input: Initial rectangular window I 2 Rm⇥n in the input image, initial transforma-
tions ⌧ in a certain group G (a�ne or projective), � > 0.
While not converged Do

Step 1: normalize the image and compute the Jacobian w.r.t. transformation:

I � ⌧  I � ⌧
kI � ⌧kF

, rI  @
@⇣

✓
I � ⇣
kI � ⇣kF

◆���
⇣=⌧

;

Step 2: solve the linearized convex optimization (4):

min
I0,E,�⌧

kI0k⇤ + �kEk1 subject to I � ⌧ +rI�⌧ = I0 + E,

with the initial conditions: Y0 = 0, E0 = 0,�⌧0 = 0, µ0 > 0, ⇢ > 1, k = 0:
While not converged Do

(Uk,⌃k, Vk)  svd(I � ⌧ +rI�⌧k � Ek + µ�1
k Yk),

I0k+1  UkSµ�1
k

[⌃k]V
T
k ,

Ek+1  S�µ�1
k

[I � ⌧ +rI�⌧k � I0k+1 + µ�1
k Yk],

�⌧k+1  (rITrI)�1rIT (�I � ⌧ + I0k+1 + Ek+1 � µ�1
k Yk),

Yk+1  Yk + µk(I � ⌧ +rI�⌧k+1 � I0k+1 � Ek+1),
µk+1  ⇢µk,

End While
Step 3: update transformations: ⌧  ⌧ +�⌧k+1;

End While
Output: I0, E, ⌧ .

in pixel value. Otherwise, the algorithm may tend to converge to a “globally
optimal” solution by zooming into a black pixel.

To resolve the ambiguities in the domain transformation, we also need some
additional constraints. For simplicity, we assume that the support of the initial
image window ⌦ is a rectangle with the length of the two edges being L(e1) = a

and L(e2) = b, so that the total area S(⌦) = ab. To eliminate the ambiguity in
translation, we can fix the center x0 of the window i.e., ⌧(x0) = x0. This imposes
a set of linear constraints on �⌧ given by :

At�⌧ = 0 (9)

To eliminate the ambiguities in scaling the coordinates, we enforce (typically only
for a�ne transforms) that the area and the ratio of edge length remain constant
before and after the transformation, i.e. S(⌧(⌦)) = S(⌦) and L(⌧(e1))/L(⌧(e2)) =
L(e1)/L(e2). In general, these conditions impose additional nonlinear constraints
on the desired transformation ⌧ in problem (3). As outlines earlier, we can lin-
earize these constraints against the transformation ⌧ and obtain another set of
linear constraints on �⌧ :

As�⌧ = 0 (10)

As a result, to eliminate both scaling and translation ambiguities, all we
need to do is to add two sets of linear constraints to the optimization problem

[11] Zhang, Z., et al., TILT: Transform Invariant Low-Rank Textures. International Journal of Computer Vision, 2012.
99(1): p. 1-24.
[12] Ren, X. and Z. Lin, Linearized Alternating Direction Method with Adaptive Penalty and Warm Starts for Fast Solving
Transform Invariant Low-Rank Textures. International Journal of Computer Vision, 2013. 104(1): p. 1-14.
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16

Fig. 9 Representative Results of TILT. The objects can be categorized as follows. Top two rows: regular patterns and textures;
Middle two rows: signs, characters, and printed text; Bottom two rows: bar code, objects with bilateral symmetry. In each case, the

red window denotes the input and the green window denotes the final output. The image enclosed by the green window is rectified

and displayed to emphasize the low-rank structure.

– The second example (Figure 12(b)) shows another
limitation of the low-rank assumption. If the cho-
sen window contains two adjacent low-rank regions
each of which is distorted di↵erently, the combined
region might no longer be low-rank when subject
to one global a�ne or projective transformation.

Proper segmentation of the di↵erent low-rank re-
gions is needed before TILT can work correctly on
each of the low-rank regions; or TILT has to be ex-
tended to simultaneously handle multiple domain
transformations.
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Failure case:18

(a) high-rank structures (b) two low-rank regions (c) too much occlusion (d) random textures

Fig. 12 Failure Cases. TILT fails to recover the geometry of these images since they deviate from the assumptions under which TILT

is designed to work. From left to right: two incompatible dominant low-rank structures, overlapped or adjacent; too much occlusion;

random textures.

Fig. 11 E↵ect of Initialization. For the examples in Figure

10(g) and (h) where TILT had failed earlier, the correct solution
is found with a slightly di↵erent initialization, in both cases by

reducing the horizontal width of the initial (red) window.

fact, we believe, each of the problem deserves a much
more thorough investigation so that more e↵ective and
e�cient algorithms could be developed in the future.

5.1 Matrix Completion for Boundary E↵ects

We note that in Step 3 of Algorithm 1, we update the
transformation parameters ⌧ , and recompute the trans-
formed image I � ⌧ in Step 1 of the subsequent itera-
tion. While this is conceptually sound, it poses a serious
problem in practice. This is because real images always
have finite support or size. So, if the window containing

the texture of interest is close to the image boundary,
then the transformed image window I � ⌧ might not be
well-defined at all pixels. The conventional methods to
treat this problem is to either assume that the region
outside the image has zero pixel values, or to interpo-
late them from the boundary pixels ensuring some de-
gree of smoothness. The former approach is ill-suited to
our problem since it may destroy the low-rank structure
of the texture inside the image (hence TILT may fail
to converge to the correct solution as shown in Figure
10(a)), while the latter introduces more free parameters
to the algorithm, namely the choice of the interpolation
function.

This problem can actually be handled in a more
principled manner. We treat the pixels that fall outside
the image boundary as missing entries of the low-rank
matrix to be recovered. This formulation is in a similar
spirit as the low-rank matrix completion problem that
has been extensively studied recently (Recht et al, 2008;
Candès and Recht, 2008; Candès and Tao, 2010). Let
⌦ represent the set of pixels that are located inside the
image boundary after transformation. Then, we modify
the constraint in the linearized problem (7) as follows:

⇡⌦(I � ⌧ +rI�⌧) = ⇡⌦(I0 + E), (18)

where ⇡⌦(·) denotes the projection operator onto the
set of entries with support in ⌦. Thus, we apply the
constraint only on the set of pixels at which the trans-
formed image I�⌧ is well-defined. Since ⇡⌦(·) is a linear
operator, the resulting optimization problem is still a
convex program and can be solved by the ALM algo-
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Image Rectification with Low-rank and Sparsity����?95�fP_"TFDK�
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[5] Babacan, S.D., et al., Sparse Bayesian Methods for Low-RankMatrix Estimation. IEEETransactions on Signal Processing, 2012. 60(8): p. 3964-3977.

[6] Beal, M.J., Variational algorithms for approximate Bayesian inference /. University College London, 2003.

0 ; ,Y I E N Y I Jτ τ= + +ΦΔ + = Φ = −o

gw`ÖÂ�ĳğüďD uÀ[5]ÁGaussian-Gamma�?ČhÚ*ĳÖ¢
�a:�¡a

0

0 0
1, ,

min . .
I E

I E s t I J I E
τ

ξ τ τ
∗
+ + Δ = +o

]�ąĩ )S tR

0= TI AB

E

τΔ

Y

1 1(0, ), (0, )k k k kA Bγ γ− −
g g ( , )k a bγ γγ Γ:

1(0, )ij ijE α− (a , b )ij α αα Γ:

1(0, )S τ λ−Δ ( , )a bλ λλ Γ:

1( , )T
mnY AB E Iτ β −+ +Φ 1( )p β β −=

�8,�A2ďD �h[6]Àî1Â����ąĩÖ¬¡)w

20/26
[13] Hu, S., et al., Sparse Bayesian learning for image rectification with transform invariant low-rank textures. Signal

Processing, 2017. 137: p. 298-308.
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[1] Zhang, Z., A Flexible New Technique for Camera Calibration. IEEE Transactions on pattern analysis and machine intelligence, 2000. 22(11): p. 1330--1334.
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[14] Zhang, Z., A Flexible New Technique for Camera Calibration. IEEE Transactions on pattern analysis and machine
intelligence, 2000. 22(11): p. 1330–1334.
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[15] Zhang, Z., et al., Camera calibration with lens distortion from low-rank textures. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011: p. 2321-2328.
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Face Recognition via Sparse Representation
Introduction Sparse Representation Experiments Discussion

Classification of Mixture Subspace Model

1 Assume y belongs to Class i

y = ↵
i,1vi,1 + ↵

i,2vi,2 + · · · + ↵
i,n1vi,n

i

,
= A

i

↵
i

,

where A

i

= [v
i,1, vi,2, · · · , v

i,n
i

].

2 Nevertheless, Class i is the unknown variable we need to solve:

Sparse representation y = [A1, A2, · · · , A
K

]

2

4
↵1
↵2

...
↵

K

3

5 = Ax 2 R3·640·480.

3 x0 = [ 0 ··· 0 ↵T

i

0 ··· 0 ]T 2 Rn.

Sparse representation encodes membership!

Allen Y. Yang <yang@eecs.berkeley.edu> Robust Face Recognition via Sparse Representation
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Face Recognition via Sparse Representation

6

Algorithm 1 (Recognition via Sparse Representation)
1: Input: a matrix of training images A 2 Rm⇥n for k subjects, a linear feature transform R 2 Rd⇥m, a test image y 2 Rm,
and an error tolerance ✏.

2: Compute features ˜y = Ry and ˜A = RA, and normalize ˜y and columns of ˜A to unit length.
3: Solve the convex optimization problem (P 0

1):

min kxk1 subject to k˜y � ˜Axk2  ✏.

4: Compute the residuals ri(y) = k˜y � ˜A �i(x)k2 for i = 1, . . . , k.
5: Output: identity(y) = arg mini ri(y).

12 ⇥ 10 down-sampled images as features, Algorithm 1 achieves an overall recognition rate of 92.1% across the Extended
Yale B database (see Section VI).

Fig. 3. Top: Recognition with 12 ⇥ 10 down-sampled images as features. The test image y belongs to Subject 1. The values of the sparse coefficients
recovered from Algorithm 1 are plotted on the right together with the two training examples that correspond to the two largest sparse coefficients. Bottom:
The residuals ri(y) of a test image of Subject 1 w.r.t. the projected sparse coefficients �i(x) by `1-minimization. The ratio between the magnitudes of the
two smallest residuals is about 1:8.6.

For comparison, Figure 4 top shows the coefficients of the same image features given by the conventional `2-minimization
(4), and Figure 4 bottom shows the corresponding residuals w.r.t. the 38 subjects. The coefficients are much less sparse than
those given by `1-minimization (in Figure 3), and the dominant coefficients are not associated with Subject 1 either. As a
result, the smallest residual in Figure 4 is not at Subject 1.

III. RELATIONSHIPS TO NEAREST NEIGHBOR AND NEAREST SUBSPACE
The above example illustrates `1-minimization’s superior ability to recover the desired sparse representation, compared to

`2-minimization. One may notice that the use of all the training images of all subjects to represent the test image goes against
the conventional classification methods popular in face recognition literature and existing systems. These methods typically
suggest using residuals computed from “one training image at a time” or “one subject at a time” to classify the test image.
The representative methods include:
1) The nearest neighbor (NN) classifier: Assign the test image y to subject i if the smallest distance from y to the nearest
training image of subject i

ri(y) = min

j=1,...,ni

k˜y � ˜vi,jk2 (14)

is the smallest among all subjects.6

6Another popular distance metric for the residual is the `1-norm distance k · k1. This is not to be confused with the `1-minimization in this paper.

[10] John Wright, Allen Y. Yang, Arvind Ganesh, Shankar Sastry, and Yi Ma. Robust face recognition via sparse
representation. To appear in PAMI, 2008.
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Extension II: Occlusion Compensation

1 Sparse representation + sparse error

y = Ax + e

2 Occlusion compensation

y =
�
A | I

� ✓
x
e

◆
= Bw

Allen Y. Yang <yang@eecs.berkeley.edu> Robust Face Recognition via Sparse Representation

Lei Yu (School of Electronic and Information Wuhan University)Sparse Signal Processing Master Course, 2017 132 / 135



Motivation Low-dimensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications

Face Recognition via Sparse Representation

Lei Yu (School of Electronic and Information Wuhan University)Sparse Signal Processing Master Course, 2017 133 / 135



Motivation Low-dimensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications

Face Recognition via Sparse Representation

Lei Yu (School of Electronic and Information Wuhan University)Sparse Signal Processing Master Course, 2017 134 / 135



Motivation Low-dimensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications

Q & A

Sparsity, Structured sparsity, Low-rank

What’s next?
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