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Applications
m Imaging
m Radar Signal Processing

= Image Denoising/Inpainting/Super-resolution
m Image Calibration and Rectification

m Face Recognition
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Noisy speech signal y

y=s+tw
s: noise-free speech signal
w: noise sequence

0.6 Noisy signal
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Motivation: Signal Denoisin

Digital LTI filters are often used for noise reduction (denoising),

® lowpass filter
® highpass filter
® bandpass filter

® bandstop filter
but not applicable for

® the noise and signal overlap in the frequency domain

® the respective frequency bands are unknown
So, let's take a look at Sparsity!

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017
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Motivation: Signal Denoising

Assume the noise-freen speech signal s has a sparse set of Fourier
coefficients:

y=Ac+w

y: noisy speech signal, length M

A: M x N DFT matrix

c¢: sparse Fourier coefficients, length N
w: noise, length M

Find estimation of ¢ (BPD algorithm)

&=argmin {[|y — Ac|l3 + Alel|: }

Once ¢ is found, an estimate of the speech signal is given by 8 = A¢

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 6 /135
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Motivation: Signal Denoisin

0.06
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Motivation: Signal Decon

If the signal of interest x is not only noisy but is also distorted by an LTI
system with impulse response h, then the available data y is

y=h®r+w<=y=Hr+w

w is additive noise, h is known system function.
Applications include:

echo cancellation
direction of arrival estimation
localization in GPS

etc.
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Motivation: Signal Inpainting

Due to data transmission/acquisition errors, some signal samples may be
lost. Fill in missing values for error concealment.
Part of a signal or image may be intentionally deleted (image editing, etc).
Convincingly fill in missing values according to the surrounding area to do
inpainting.

y=Sx
S is the selection (sampling) operator

200 missing samples

0.5 Incomplete signal )
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" v \ \ | | ,\
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Motivation: Signal Separation

For a signal composed by two different type of data
T =21+

x1 is sparse under transform with operator Ay, x5 is sparse under
transform with operator A, then signal = can be separated by solving

{é1,69} = argmin {2 — Arer — Azea 3+ Aflea |+ Aellezll }
Once get c1,co, the two components can be estimated

1 = A161,22 = Azlo.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 10 / 135
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Separation

Signal
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Sparse Signal Processing

Canonical problem
y=Ac+n

Find c via optimization
¢ = argmin{|ly — Ae|3 + (c)}

Exploiting sparsity is good,
® normally with better performance than traditional method,

® linear measurement model,

® nonlinear, thus hard to solve

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017
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2 Low-dimensional Signal Model
m Sparsity
m Beyond Sparsity
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2 Low-dimensional Signal Model
m Sparsity

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 14 / 135



Low-dimensional Signal Model Con
O@0000

The number of nonzeros is called the /°-norm of z:

lzllo £ ##{ila; # 0}
Denote Y the set of all k-sparse signals. And geometrically

1/p
el =D =l | = Hl‘HOZI{i_I}g)IIJ«“Hﬁ

1
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Sparsity is Universal

® Signal is itself not sparse at all, then sparsify it!!!
r=Va, st o€l

¥ Fixed dictionaries: Wavelet, DCT, etc.

R =

f
Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 16 / 135
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Underdetermined system I [ -'* "=
- | ||
y=Ax g [ e !

Look for the sparsest  that agrees with our observation:

minimize ||z|o subject to Az =y.

Theorem 1 (Gorodnitsky+Rao ’97) .
Suppose y = Axg, and let k = ||xp||o. If null(A) contains
no 2k-sparse vectors, xo is the unique optimal solution to

minimize ||z|o subject to y = Awx.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 17 / 135
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[e] [ le]

The sparse solution

minimize |[[x||o subject to Az =1vy.  NP-hard hard to appx.
[Natarjan "95],
[Amaldi+Kann ‘97]
11

minimize ||x|[; subject to Ax =1y.  Efficiently solvable

R* {z| Az =y}

{z | [zl <t}

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 18 / 135
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Sparse signal z*
¢ g
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Measurement

¥ Measurement fitness (M < N):

& = argmin ||y — Az|3 \ .
1. Infinite solutions; \
y=Ax

2. Over-fitting.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 19 / 135
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Linear Inverse Problem

Measurement -+ {2 Energy

¥ Measurement fitness (M < N):
& =argmin|jy — Az|3
1. Infinite solutions; & #z*

y= Az

1
lzllz = ¢

2. Over-fitting.

TV

® /5 energy limited:
& = argmin ||y — Az||3+ X ||z[3

1. Solution is not sparse.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 19 / 135
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Representation Rel

Measurement + ¢1 Energy

9 /; energy limited:
& = argmin ||y — Az[|3 + A |}z

1. Unique sparse solution;

y= Az

lzlli = ¢
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Measurement + ¢1 Energy

9 /; energy limited:
& = argmin ||y — Az[|3 + A |}z

1. Unique sparse solution;

2. Noise robustness.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 19 / 135
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Measurement + ¢1 Energy

9 /; energy limited:
& = argmin ||y — Az[|3 + A |}z

1. Unique sparse solution;

2. Noise robustness.

N
.

¥ /, energy limited: el =c,0<p<1

s
’

7 = argmin |y — A3 + Al

1. Sharper, but non-convex.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 19 / 135
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Linear Inverse Problem

Measurement + ¢1 Energy  + Structures

® Group energy limited:
& = argmin [y — Az|3 + N[Jelg
where

lzllg=> 4> dj-a7} with G the
Geg \jed N
set of groups, d; the weight.

7
\[/ ellg =<

1. Sharper, still convex.
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2 Low-dimensional Signal Model

m Beyond Sparsity

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 20 / 135



Low-dimensional Signal Model
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Low-Rank Model
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Visual data exhibit low-dimensional structures
due to rich local regularities, global symmetries,
repetitive patterns, or redundant sampling.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 22 /135
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| | || |

. | |
Underdetermined system I “m . |2
di it
_ [ | [ “m B | o
y = Ax n e 04 |k

Robust PCA

Corrupted Observations Low-rank Structures Sparse Structures

4+
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Low-Rank Model

Low-rank model:
Y=X+FE+N

Robust PCA (Non-tractable):
'HW—X—E2+ mw+HE
min+ [ +ran — I Ello
Convex Relaxation:

1 1
in—||Y - X - E|%2+ || X, +—||E
?%A” \M+H\\+V%HH1

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017
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3 Compressive Sensing
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Classical Sampling Formulation

The Shannon sampling theorem provides sufficient but not necessary
conditions for perfect reconstruction.
Moreover: How many real signals are bandlimited? How many realizable
filters are ideal low-pass filters?
By the way, who discovered the sampling theorem? The list is long ;-)

® Whittaker 1915, 1935

Kotelnikov 1933
Nyquist 1928
Raabe 1938
Gabor 1946
Shannon 1948

Someya 1948
Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 26 / 135
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Recall of Sampling Theor

® Shannon's sampling theory: uniformly sample data at Nyquist rate (2
times of Fourier bandwidth)

N i =
e [ ~— too {
samp’e " much

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 27 / 135
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Procedure of sampling

® Traditional sampling theorem admits the following procedure:
® Uniformly sample data at Nyquist rate

¥ compress data

transmit and receive

decompress data

N>K
a:{ sample }ﬁ'{compress#'{ transmit/store ‘

~ = W | e
G| . %

sparse
wavelet
transform

‘ receive }5-‘ decompress }i' T

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 28 / 135
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Compressive Sensi

® CS directly acquire “compressed” data

M -
ZUH| compressive sensing }@'{ transmit/store ‘

1 b

. M N
‘ receive H reconstruct }—’ T

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 29 /135
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Compressive data acquisition

® When data is sparse, CS can directly acquire a compressed
measurement with no information loss

y= Az
® Random projection will work
Yy o) T
k1 [ e o
measurements - |... H Ss[i)g::?
‘m
M x N K
nonzero
M = O(K |Qg(N/K ) entries

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 30 / 135
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CS v.s. Shannon’s thoe

® Signal model

® In CS, signals are sparse;

® In Shannon's theory, signals are Fourier bandlimited

® Sampling procedure

® In CS, acquire information via random projection

® In Shannon's theory, acquire data via uniform sampling

® Recovery method

® In CS, recover signal via nonlinear algorithm;

® In Shannon's theory, recover signal via linear interpolation.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 31 /135
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Compressive Sensin

Given a signal z € R", CS measurements are obtained by linear projection
y= Az

with A € R™*"™ the sensing matrix and y € R™ the captured
measurements.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 32 /135
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Compressive Sensi

Given a signal z € R", CS measurements are obtained by linear projection

y= Az

with A € R™*"™ the sensing matrix and y € R™ the captured
measurements.

Underdetermined

Notice that m < n, leading to a underdetermined linear system.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 32 /135
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Compressive Sensing

Given a signal z € R", CS measurements are obtained by linear projection

y= Az

with A € R™*"™ the sensing matrix and y € R™ the captured
measurements.

Underdetermined

Notice that m < n, leading to a underdetermined linear system.

1. How should we design the sensing matrix A?
— to preserve information

2. How can we recover the original signal x?

— to recover information (Sparse Representation/Sparse Recovery)

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 32 /135
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Properties of Sensing Matrix

1

. Spark

2. Null Space Property (NSP)

3. Restricted isometry Property (RIP)
4

. Coherence

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 33 /135



Compressive Sensing

Spark )
EX

The spark of a given matrix A is the smallest number of columns of A

that are linearly dependent.

0 1
A= 0 1 |, spark(A)="
11

VA € R™"™ with m < n, what is the maximum spark of A?

VA e R™" spark(A) € [2,m+1]

Master Course, 2017 34 /135

Lei Yu (School of Electronic and Information Sparse Signal Processing



Motivatic sional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learnin

Null space property

® Null space

N(A)={z:42=0}

® Null space property (NSP) A matrix A satisfies the NSP of order k
if there exists a constant C' > 0 such that,

[[Pacly
vk

holds for all h € N'(A) and for all A with |A| <k.

[hallz < C

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 35 /135
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Restricted isometry property
EX

A matrix A satisfies the Restricted Isometry Property (RIP) of order k if
there exists a d;, € (0,1), such that (for all z € X)

(1=d0)llzl < |l Az]l3 < (1+60)[ll3

Links to singular values

x € Xy, denote T = supp{x}, Ar the submatrix of A, the twoside
inequalities is equivalent to

A 2
1-4; < w <1+0d
TS el
Arx
Note that % is bounded in | Amin (AF Ar), Amax(AF Ar)).
Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 36 / 135
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Coherence

EX
The coherence of a matrix A, u(A), is the largest absolute inner product
between any two columns a;,a; of A

1<i<j<n ||ag||2]|aj]|2

Bounds of Coherence

u(A) =

1
if m < n, the lower bound is approximately T
m

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 37 /135
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Links between these properties

® RIP = NSP: If §y, < V2 —1, then A satisfies NSP of order 2k, with

constant
_ V28,
1— (14 v/2)d2

¥ Coherence = RIP
5 = (k—1)u(A)

with k< 1/p.

® Spark v.s. coherence

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 38 /135
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Information preservin

® For sparse signals, the CS measurements
y=Az (1)
where A € R™*" with m < n, v € ¥, and y € R™.

® Information preserving < uniqueness of solution.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 39 /135
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Uniqueness of solution

For any vector y € R™, there exists at most one signal x € Xy, such that
y = Ax if and only if spark(A) > 2k.

1. Necessity: Suppose spark(A) < 2k
= there exists 2k colomns of A that are dependent
=dh € Yo, s.t. h GN(A) = dxy,x9 € Yy, S.t. h=1x1 — 29
= Azy = Axzy (Contradiction)

2. Sufficiency: Suppose dx1,x9 € X, s.t. y= Axy = Axs
= h=x1—x9 € Yo, i.e. Ah=0
= h =0, i.e. 1 =9 (since spark(A) > 2k)
M
Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 40 / 135
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Rm
Suppose: as
ai

y=Axr= Z a;T; \

iesupp(x) \

Intuition: Recovering x is "easier" if the a; are not too similar ...
This is exactly the definition of coherence: (smaller the better)

as

n(A) =m7gx|<ai,aj>|

17

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 41 /135
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Uniqueness of solution (other conditions)

Considering the sparse signals Y, the uniqueness of solution

\V/$1,IE2 € Xk, T 7&5172 & Ax #AIEQ

® Spark guarantee
spark(A) > 2k
¥ NSP guarantee
A satisfies NSP of order 2k
® RIP guarantee
62k <1
® Coherence guarantee
1
A< ——
wA) < 5

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 42 /135
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® Thus sparsity level should satisfy

k< (4™ =

O(vm)

® Truth is often much better (Phase transition at k = o m)

(School of Electronic and Information

o 0.2

0.4 0.6
Fraction corrupted, p

Sparse Signal Processing

0.8 1

Master Course, 2017
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Necessary measurement number with RIP

£ (Candes 2005, 2008)

Suppose y = Axy with RIP constant o) < V2 —1, then g is the unique
optimal solution to
min ||z||1, s.t.y= Az
EE
Let A€ R™*" satisfies RIP of order 2k, with constant § € (0, 5] Then

m > Cklog (%)

where C' = 0.5log(v24+1) ~ 0.28.

‘

k ~ m when considering RIP of matrix A

Lei Yu (School of Electronic and Information Sparse Signal Processing

Master Course, 2017 44 /135
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Constructing sensing matrix

® Deterministic method

® Random method

® For any random matrix,
spark(A)=m+1
with probability 1.
®  For sub-Gaussian, if
m=0 (k/agk log (%))

then RIP of order 2k is fulfilled with probability at least
1—2exp(—c165.m).

® For any zero-mean and finite variance distribution, it has

u(A) = /(Zlogn) /m

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017
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® Logistic map
Zn+1 =12n(1—2p)

[1] L. Yu, etc., “Compressive Sensing With Chaotic Sequence,” IEEE SPL, 2010.
Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 46 / 135
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® Logistic map
Zn+1 =12n(1—2p)

® Constructing chaotic matrix

A=y/2
m
x

where x, =1 — 22,1 g With 2,44 the coefficient selected from
generated chaotic set Z(d,k,20) = {2n, Zntds-» Znthd, -+ }-

Zo T Lm(n—1)
z1 v Tm(n—1)4+1

m—1 " Tmn—1

[1] L. Yu, etc., “Compressive Sensing With Chaotic Sequence,” IEEE SPL, 2010.
Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 46 / 135
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Statistical Independence

Denote Z = {zn, Zn41,""* s Zn+r,- - | the sequence generated by Logistic

map with intial state zy = cos(2nx), and integer d the sampling distance,
then for any positive integer mg,m1 < 2%, it has

E(zp° 2 1q) = E(2°)E(24)

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 47 / 135
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Statistical Independence

Denote Z = {zn, Zn41,""* s Zn+r,- - | the sequence generated by Logistic
map with intial state zy = cos(2nx), and integer d the sampling distance,
then for any positive integer mg,m1 < 2%, it has

E(zp° 2 1q) = E(2°)E(24)

Chaotic matrix A € R™*™ constructed as (2) satisfies RIP of order k for

constant § € (0,1), with overwhelming probability, providing that
m > O(klog(n/k).

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 47 / 135
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Compressive Sensing sentation R

Signal recovery for variable matrix with size 50x100

0.8

0.7F

Recovery rate
o
o
T

0.41

03

0.2

B

T
—+&— Chaotic matrix
— & — Sparse matrix

* - Gaussian random matrix
—O— - Bernoulli random matrix ||

10

.
15 20 25 30 35 40
Signal sparsity k

45 50

[]: Signal recovery for different sensing matrix with size 50 x 100.

(School of Electronic and Information

Sparse Signal Processing

Master Course, 2017
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4 Sparse Representation

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 49 /135
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Sparse Representation/Sparse Recove

1.
2.
3.
4.
5.
6.
7.

(School of Electronic and Information Sparse Signal Processing

Lei Yu

Basis pursuit

Basis pursuit denoising
Matching pursuit

etc.

Bayesian approach
Deep learning

Analog approach

Master Course, 2017

50 / 135



nsional Signal Model i ng Sparse Representation Relation to Deep Learning

asis pursuit

Basis pursuit (BP) problem:

¢ = argmin lell1, st. y=Ae

¥ convex problem

® noise-free

Lei Yu (School of Electronic and Information Sparse Signal Processing

Master Course, 2017

51 /135



g Sparse Representation Re

Basis pursuit denoisin

Basis pursuit denoising (BPD) problem

¢ =argmin {[ly — Ae|3 + Ale:}

¥ convex problem

¥ noisy, A is a parameter balancing measurement fidelity and sparse
prior.

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 52 / 135
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Matching pursuit

Matching pursuit problem (approximately)

é:argmcinHy—AcH%, st. Jlelo< K
9 efficient

@ approximately solve the Ly problem.

® variations: orthogonal matching pursuit, CoSaMP, ...

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 53 / 135
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p(ylz) p(x)

MAP:plely) = T p(e)da
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Bayesian Interpretation

Measurement

p(ylw) p(x)
[ plylz)p(z)dz

® Measurement Likelihood: Gaussian noise model

y— Az ~ N(0,00)

MAP : p(zly) =

Lei Yu (School of Electronic and Information Sparse Signal Processing

Master Course, 2017 54 / 135
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Bayesian Interpretation

Measurement + ¢1 Energy

_ ~ plylx) p(z)
MAPpl0) = 1) p(a)ds

® Measurement Likelihood: Gaussian noise model
y— Az ~ N(0,00)
® Energy Prior: sparse promoting model

e.g. z ~ Laplace(0,b)

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 54 / 135
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Bayesian Interpretation

Measurement + ¢1 Energy  + Structures?

_ ~ plylx) p(z)
MAPpl0) = 1) p(a)ds

® Measurement Likelihood: Gaussian noise model
y— Az ~ N(0,00)
® Energy Prior: sparse promoting model
e.g. z ~ Laplace(0,b)

® How to introduce structures? <«-- Hierarchical Bayesian Model
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Motivation Low-dimensional al Model Compressive Sensing Sparse Representation Relation to Deep Learnir Applications

Hierarchical Bayesian Model for CS

® Gamma-Gaussian Model ~~ Sparsity: .

b c,d
T NN(Oaa_l) §>
O ~ F(a,b) l w; Qag
1 ﬁ)
v I~ il as (a,b) — (0,0) Q"i__*é’”

Gamma-Gaussian Model for CS

® Noise tolerance, non-parametric;

® but no structure prior.
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® Spike-and-slab model:

x; ~ (1—m;)d —i—7ri./\/‘(0,al-_1) <l>

ag

o
a,bof
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nsing Sparse Representation R

® Spike-and-slab model:

O 0 T I

xiw(l—m)éo—i—m/\/'(o,a;l) <> <> <>

® Pattern selection: L@

7r§0>, if Pattern (a)
, if Pattern (b)
, if Pattern (c)

m={ il
A

1. Promote clusters, while [0 o]
eliminate isolates.
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Applic

It does introduce the cluster
structure, while ...

How to determine z; = 07 <> <> ) §>

Threshold procedure T e

e , b

i 0 peh) = ag
|z;| < t: Ambiguous to Q’—\ /Jg) ,
determine t; e ;

No explicit estimators
MCMC technique is
exploited: slow.
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Model Con Sparse Representation Re

he 2nd Proposed Model: CluSS-VB

® Latent model: G e

g L LS
w~ N(0,07) P é““ L | e
z; ~ Bernoulli(m;) CL

Ti Ti
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g Sparse Representation Re

¥ Latent model: G e

r=woz
w~ N0, 1)

z; ~ Bernoulli(m;)

® Pattern selection:
7r§0>, if Pattern (a)

a
m = 7r§1>, if Pattern (b)
7r§2>, if Pattern (c)
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Motivation ona Model Con nsing Sparse Representation Relation to Deep Lear

It is faster and more robust, while
not “elegant” ...

Pattern selection procedure:
Deterministic, hard
decision, lots of
parameters;

What's next?

“Pure"” statistical model:
Statistical, soft ab >
decision, thus more

robust. . ;

(2 (b) (c)
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nsional Signal Model

he 3rd Proposed Model: MBCS-LBP

ng Sparse Representation Relation to Deep Learning

® Latent model:

r=woz

w~N(0,a71)
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nsional Signal Model

he 3rd Proposed Model: MBCS-LBP

¥ Latent model: ® Local beta process:
T=woz zj ~ Bernoulli(m;),Yz; € 273
w~N(0,a71) m; ~ Betal(e, f)

e f a,b cd {
§> ? Sparse Signal: 0006@0

1 Dependent Ele.:

; y
i ;. ap
i
Local Graphs z7(;):

b 40

: | i
EBP e Oz' i OU’ Beta Process: e f <>—’D—'i OOOOOE
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Motivation Low-dimensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications
000000

000000000
00000

[e]e]e}
[e]e]elelelelelele]
000000000
00000000

Experiments: Setting up

Default settings

® Gaussian random sensing matrix A;
® Clustered +1(or Gaussian) spikes;

¥ Noise level og = 0.02.

® Basis Pursuit (BP);
® CoSaMP, Block CoSaMP;
® Bayesian CS.
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nsing Sparse Representation R

Evolution of variable of noise invariance o = 0.02:

Convergence of A

R i
© — i
50 100 150 200 250 300
| . /
&oumin zoomin oo 7
0.05 T T T T —
0.041 ]
0.03 ]
°
)
0,021 4
0.01F b
0 i i i i i
240 250 260 270 280 290 300

Iterations

CluSS-MCMC
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nsing Sparse Representation R

Evolution of variable of noise invariance o = 0.02:

Convergence of g,

03l : : : ]
0.25 1
o 02r ; : : —
© -
0.15- i 1
0.1r ) X 4
005 NG
10 20 30 40 50 60 70/ 80 90 100
terations S
B ih
0.05
0.04
0.03
°
0.02 - q
0.01 1
0 i i i i
55 60 65 70 75 80
Iterations
CluSS-VB
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nsing Sparse Representation R

Evolution of variable of noise invariance o = 0.02:

Convergence of g,

0.6 T T T T T T T T T T 3

0.4f 1
o
© 03f 1
0.2 : ¥ M
0.1 i .

5 10 15 20  z$om RO 3o 50
Zoom in \\__,/'
0.05

0
40 42 44 46 48 50 52 54
Iterations

MBCS-LBP
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nsional Signal Model Con i nsing Sparse Representation Re

Experiments: Convergence

Evolution of variable of noise invariance o = 0.02:

Convergence of g,

06 . . . , . . . . . —
05 4
0.4 4

o

© 03} 1
0.2f : o
0.1 ‘ .

5 10 15 20 Zom B0 334 40 45 50
Zoom in e
0.05 ; ; V. ; ; ‘

0 i i
40 42 44 46 48 50 52 54
Iterations

CluSS-MCMC slower than CluSS-VB slower than A MBCS-LBP
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eep Learni

|
orn
T
|
IS
1
I

0 60
(b) Cosamp

® Clustered Gaussian ir ‘ /\ A/\ j
Spikes: S WW\ ‘

(c) Block CoSaMP NF

® Signal size UV W V.
N = 100; A e AN
! 10 20 30 40 @ Ba)?gs\an CSGO 70 80 90 100
. 2 T T T
® Sparsity s = 30; éFF e
10 0
® Clusters C' = 2. : o cusS wonE’
if Eﬁx
-1k , )
¥ Measurements " EE 6 w0
M = 50. _%E \ ﬁﬂk ‘ M%?XZ—%
10 90 100

50
(g) MBCS-LEP

e ——
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Model Con

5"’\*\ A —+-8BP
ool o Block-CoSaMP NF |
3, - ¢ - CosamP
b, \ Bayesian CS.

08 IS \A ——+— CluSS-VB H
"y ¥\ —=— MBCS-LBP
[ \

07

Successful recovery rate
o o o
& 8 &

°
N

o

Number of Clusters: C' =1
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Model

Conm
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Lei Yu

Number of Clusters:

PR ——
ook R Block-CoSaMP NF
e - ¢ - CosaMP
“\ \ Bayesian CS
o8| N \ —+— Cluss-VB
? N \ —s— MBCS-LBP
07}

Successful recovery rate
o o o o
S & 2 &

°

(School of Electronic and Information

01 02 03 04

06
Sparsity/Measurement

Sparse Signal Processing

p Learni

C=4
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nsional Signal Model

Lei Yu

Number of Clusters:

MM S v e
ook R Block-CoSaMP NF
e - ¢ - CosaMP
“\ \ Bayesian CS
o8| . \ —+— Cluss-VB
? N \ —s— MBCS-LBP
07 [

Successful recovery rate
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@

s
\
\
02 \
\
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C =1 better than

(School of Electronic and Information

Sparse Signal Processing

C =2 better than

C=4
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Model Con

T
——K=2,BP
K=2, Block-CoSaMP
09 —6—K=2, Co! ml
—9—K=2, By
—8—K=2, Cluss
08 +- K=4,BP
K=4, Block-CoSaMP
07 O K=4, CoSaMP I
v K=d, B
o K=4,CluSs

Successful recovery rate
°

A A
05 0.6
‘Sparsity/Measurement

E: K =2 means C =1, while K =4 means C = 2.
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Model Con

Ranging noise level o9 = 0.01 ~~ 0.09:

—f— BP
~——<— CoSaMP

BCS
30 | == CluSS-VB
—&— CluSS-MCMC

35

SNR of recovery

15

% o o o

20 25 30 35
SNR of observation

CluSS-MCMC v.s. CluSS-VB
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Ranging noise level o9 = 0.01 ~~ 0.09:

Lei Yu

eep Learni

35

W
S

T

—f— B

=~ CoSaMP
BCS

|| ==6=— CluSS-VB

——=-— MBCS-LBP

P

SNR of recovery

[ N N

(5, o wu
T T

i
o
N

K.
8

(School of Electronic and Information

SNR of observation

CluSS-VB

Sparse Signal Processing

18 20 22 24 26 28

30

V.S.

32 34

MBCS-LBP
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eep Learni

Experiments

—¥— cluss-vcke

Runtime (iog)

07 08 09 1

04 05 05
‘SparsitylMeasurement

The proposed algorithms are much slower than the benchmark algorithms.
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2.91dB 3.20dB -1.76dB 24.32dB

F

3.68dB 3.91dB -1.75dB 22.92dB
21.47dB
3.60dB 4.24dB -4.53dB 20.64dB

H B

. (1st col.) original signals, reconstructions via (2nd col.) BP, (3rd col.)
CoSaMP, (4th col.) BCS and (5th col.) MBCS-LBP.
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Motivatic sional Signal Model Comp ensing Sparse Representation Relation to Deep Learnin

Recover Sparse Signals with Cucuits: A new dynamical system is
constructed by introducing the parameter a € (0,1}, i.e.,

#(t) = a(t) (3)

with [-]* being a function defined as [-|* =|-|*-sgn(-) where |-|,-,sgn are
all element-wise operators, o € R, denotes an exponential coefficient and

=1, ifw>0
sgn(w)q €[-1,1], ifw=0.
=—1, if w<O

L. Yu, G. Zheng and J. P. Barbot, "Dynamical Sparse Recovery With Finite-Time Convergence," in IEEE Transactions on
Signal Processing, vol. 65, no. 23, pp. 6146-6157, Dec.1, 1 2017.
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Motivation imensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applic

Dynamical Sparse Recovery

Optimization of sparse representation problem:
o = arg min - [ly — $a(3 + M(x) (4)
zE€RN 2

and typically, the sparsity-inducing term ¢ (z) = ||z|j; = Z |z;| and A >0

7
is the balancing parameter.

Theorem

If sensing matrix satisfies RIP, the state u(t) of (3) converges in finite time
to its equilibrium point u*, and Z(t) of (3) converges in finite-time to = of

(4).
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Model Con

® Convergence Speed:

o
A

i) ANGET -~ LCA

> 2 AT Proposed, a=0.5
=l TTeell

= Seelll

=i RIS
g N
- -6

0 0.2 0.4 0.6 0.8 1
time (s)

0

@

B30 - - LCA

c Proposed, a=0.5
g 20

Q10

k)

w0

0 0.05 0.1 0.15 0.2 0.25 0.3
time (s)

- Evolutions of state error @(t) and the number of active nodes with
respect to time.
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Sparse Representation Re

Model Con

® Tracking ability:

3
— - Original xM(l)
25, . a,, (0, LCA
| / 644(0‘ Proposed
2t Y / /
) f 7
= ' / /
315 A / /
© \ {
1 .
05 & o/
0
0 2 4 10
time (s)

Estimation of time-varying sparse signals via LCA and the proposed

system.
Master Course, 2017 70 / 135
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Sparse Representation

Dynamical Sparse Recovery

M 2508 CHi
27-Nov-17 17:33 20.0002kHz

Working with Jiang Yulun.
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sentation Relation to Deep Learning Ap

5 Relation to Deep Learning
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al Model Comyg ensing  Sp sentation Relation to Deep Learning

Learning to Recover Sparse Signals

The canonical form of compressive sensing

y=Ax+e

¥ ye RM is the measurement vector

¥ A e RM*N s a random sensing matrix with M < N satisfying the
so-called RIP

¥ x e RY is the original sparse signal needed to be recovered with no
more than K (K < M) nonzero elements

® e is the error term consists of the possible noise and perturbations

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 73 / 135



esentation Relation to Deep Learning Applica

ogonal Matching Pursuit

Algorithm 1 Orthogonal Matching Pursuit
RMXN

Input: the sensing matrix A € , the measurement y € RM, sparsity K
Output: the recovered sparse signal x € RN
1: Initializerg =y, Ag =9, Ag=9,t=1

2 Ap=arg max | <rii,a;>|
j= N

=1,2,...,
3 A=A 1UN, Ay =A;_1Uay,
4 % = argmin |y — Ax|
5 ri=y—Axy
6: t=t+1, if t < K continue to 2, else goto 7

7: Output Xy
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al Model Comyg sentation Relation to Deep Learning

Structure Information

In reality, besides the sparsity property, the elements of sparse signals
usually follow a certain structure which could be utilized to improve the

recovery performance.
¥ block-sparse: block-based CoSaMP, block-sparse Bayesian learning
® tree-structure: TSW-CS

® uniform-sparse

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 75 / 135



al Model Comyg ensing  Sp sentation Relation to Deep Learning

Our Algorithm

Instead of searching indices of nonzero elements by solving a maximization
problem in OMP algorithm, we replace this step with learning approaches.

r=y— A%

| ; | J %
LSTM Indlex LS

r T softmax Q update

Flow diagram of the proposed algorithm

Working with Lv Chengcheng.
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Motivation a ona nal Model Com g e tation Relation to Deep Learning /

®
== SSSR-LSTM| # — V2.
—® - PCSBL ¢ , 7N
-®- CluSS °/ x
L 0.2 =3 = MBCS-LBP L
on : ®  EBSBL
=
=z
(0]
(o))
g 0.15
>
<

0.1+
20 25 30 35 40
sparsity
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Motivation a ona nal Model Com g e tation Relation to Deep Learning /
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arse Representation Relation to Deep Learning Applic

L 3
== SSSR-LSTM - * N
=@ - PCSBL o - - - .« N
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tation Relation to Deep Learning A
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sentation Relation to Deep Learnin

Block-Sparse Signals

Average NMSE on different MNIST digit test images

digit 1 3 5 7 9
CluSS 0288 0250 0.254 0295 0.341
MBCS-LBP | 0.344 0.249 0.268 0.328 0.292
PCSBL | 0.310 0.223 0.234 0.311 0.289
EBSBL | 0537 0.373 0.339 0.444 0.525
SSSR-LSTM | 0.150 0.194 0.186 0.190 0.161

Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 81 /135



tation Relation to Deep Learning Ar
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Representation Relation to Deep Learning Applic
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nal Model Com arse Representation Relation to Deep Learning Apy

Uniform-Sparse Signals
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Lei Yu

Applications

m Imaging

Radar Signal Processing
Image Denoising/Inpainting/Super-resolution
Image Calibration and Rectification
Face Recognition

(School of Electronic and Information

Sparse Signal Processing

Master Course, 2017
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900000000

6 Applications
m Imaging
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Motivation imensional Signal Model Compressive Sensing

Sparse Representation Relation to Deep Learning Applications
00000

ME (R1E: Microtubule) EMEBRA—MERT S, TAFEEAN A
BT MEEENXLEREESYADUEKIKIE 50 fKk, AF 25
MARFEHKE, HEEESESTH. MERNIMEARN 24 400K, A

HERY 12 K.

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent
Probes, Science 317 1749-1753 (2007)
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dimensional Signal Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications
[e]e] lelelelele]e]
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M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
Nature Methods 3 793-795 (2006)
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eep Learni Applications
[e]e]e] lelelelele]

“In 2005, the U.S. spent 16% of its GDP on health care. It is projected that
this will reach 20% by 2015.” Goal: Individualized treatments based on
low-cost and effective medical devices.

Image
Formation

Image
Processing
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al Model Comyg ensing S sentation Relation to Deep Learning Applications
o (¢] lelelele]

® MRI measurements is gathered from transform space (K-space):

b; :/'y(:r)exp(—jklrx)dx%-ni

b, Samples in i-th channel
~(x) MRI image in time space (to be recovered)

n; Noise in i-th channel

® Concise model
b=A(v)+n

® MRI reconstruction exploiting sparsity

v = argmin||b—A()ll3 + A (1)l
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ntation io carning Applications
[e]e]elele] lelele]

calculated
interterence
5

Y } e
\

sparse transform partial k-space

Lustig, M., Donoho, D., & Pauly, J. M. (2007). Sparse MRI: The application of compressed sensing for rapid MR
imaging. Magnetic resonance in medicine, 58(6), 1182-1195.
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| Compressive Sensing Spars: sentation ion to p Learning Applications
[e]e]elelee] lele]

amifo density_ variable density
low-resglution random undersampling random undersampling
ampling zero-fill zero-fill w/dc CS
= -
" -
v -
9.
Xl b ‘_ ¥
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Applications
0O000000e

Sparse MRI

Nyquist Low-Res. zero-fill CS
sampling sampling widc wavelet + TV
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ng Applications
000000000

® MRI measurements in k —t space
b, = /’y(x,t) exp(—jk?:v)ch—i—ni
X

® Samples in k —t space form a matrix
r'= [7<$7t0)77($7t1)7"'7’7(x7tn—1)]

b=Al)+n
® Dynamic MRI exploiting Low-rank and Sparsity

I'* = argmin || A(T) — b||2 + X1 o(T) + Ao (T)

S. G. Lingala, Y. Hu, E. DiBella and M. Jacob, "Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure:
k-t SLR," in IEEE Transactions on Medical Imaging, vol. 30, no. 5, pp. 1042-1054, May 2011.
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sentation R ion to Deep Learning Applications
000000000

conventional KLT | k-t FOCUSS | spectral penalty TV penalty k-t SLR
SER: 5.59 dB SER: 6.16 dB SER: 7.48 dB SER: 7.48 dB SER: 7.82 dB

#Motion blur

Motion inaccuracy|
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(e]

6 Applications

m Radar Signal Processing
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ntation

Fig. 1. Radar images are compressible. (a) Matched filter thr I image. (b) regression can yield a parsimonious
representation of reflectors. (c) Radar image collected using MiniSAR demonstrating the compressibility of radar scenes.
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ation Relation to Deep Learn Applications

Fig. 2. SAR imagi les. (Left) Co ional i ing and
(right) (,-norm-based reconstruction. (a) MSTAR example with sparsity
imposed on reflection coefficients [31]. (b) MSTAR example

with sparsity imposed on reflectivity gradients [31].

(c) Passive radar imaging example [32]. (d) Backhoe data

(see https://www.sdms.afrl.af.mil/main.php) example for wide-angle
imaging aperture of 110°.
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©00000000:

6 Applications

= Image Denoising/Inpainting/Super-resolution
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Motivation Low-dimensional al Model Compressive Sensing Sparse Representation Relation to Deep Learning Applications

Image Restoration

® Image restoration is one of the most important and basic areas in
image processing.

Y=HX+N

Y — Observed image

H — Degraded operator
X — Original image

N — Additive noise

® Different image restoration problem corresponds to different type of
H.
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Applications

[e]o] lele]elelele]

Image Denoi

® When H is the identity matrix.

a v -l

(a) Noisy

Denoising Result
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Applications

[e]o]e] le]elelele]

Image Deblurrin

® When H is the convolution operator.

(a) Blurred Image (b) Deblurred Result
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Representation Relation to Deep Lea Applications

[e]o]ele] lelelele]

Image Inpaintin

® When H is the restriction operator.

(a) Miss 80 % pixels (b) Inpainting Result
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(a) Corrupted by Text (b) Text Removal Result
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Applications

[e]o]e]e]e]e] lele]

Image Super-Resolution 3]

® When H is the downsampling operator.

(b) Interpolated by Bicubic (c) Reconstruction based SR
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Deblurring Results

(2a) Blurred Image (b) Reference 2, (c) Reference 7, (d) Reference 8,
PSNR=26.36 PSNR=25.32 PSNR=28.65

[8] Dong W, Zhang L, Shi G, et al. Nonlocally centralized sparse representation for image restoration. |IEEE Transactions
on Image Processing, 2013, 22(4): 1620-1630.
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Denoising Results

(a) Noisy Image (b) Reference 9, (c) Reference 8,
PSNR=27.74 PSNR=28.90

[9] Cai J F, Ji H, Shen Z, et al. Data-driven tight frame construction and image denoising. Applied and Computational
Harmonic Analysis, 2014, 37(1): 89-105.
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Super-Resolution Results

(b) Reference 8, (c) Reference 6,
PSNR=31.28 PSNR=31.66
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resentation

in|X —-DA it Al < K
min| e st Al <

Initialize Dictionary

Sparse Coding
(OMP)

Update Dictionary

One atom at a time

Step 1. Update Sparse coefficients.
mjn||X—DA||F st ||All, <K
OMP algorithm to solve above problem
Step 2. Update Dictionary atoms.

min| X ~ DA,
apply SVD to update one atom at a time

Alternate two steps until object function converges
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Block Matching and 3-D filtering (BM3

Block matching

Inverse 3D
transform

Filter / —_
thresholding

1 |

3D i Denoised 3D

grouping 3D transform group
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ional Signal Model Compressive Sensing Representation Relation to Deep Learning

Learned Simultaneous Sparse Coding

: = [ Aill,, .
(Ai)gunDGC’;Wﬁ:q st. Vi Z Hyj — Doy

2
_ A <
=D JES;

® Step 1 :Patch Grouping
Stacking similar patches to obtain S;.

® Step 2 :Update Dictionary
Set p=1,q = 2. Using Online dictionary learning to obtain D.

® Step 3 :Update Sparse Coefficients
Set p=0,q = co. Using OMP to update A;

Alternate above steps until object function converges
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ional Signal Model Compressive Sensing Sparse Representation Relation to Deep Lea

Group-Based Sparse Representation (GSR)

n
2
Dmln ZHXGk waGkHQ"i_)‘ZHaGkHO
Z:aGk k=1

® Construct 3D groups to stack similar patches. Meanwhile, dictionary and
coefficients matrix are both 3D.

® Solving above problem using alternately update dictionary and coefficients

matrix.
"""""I“E;Hl;"";
:-: BIZWBM:
' 1
e B i e - !'
I= A=,
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ation Relation to Deep Learn Applications
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(d) Blurred Image (e) BM3D(PSNR=27.66) (f) GSR(PSNR=27.77)
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®00000000

6 Applications

m Image Calibration and Rectification
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(a) Input (r=35)  (b) Input

e) Output (r =14) (f) Output (r = (g) Output (r =19) (h) Output (r = 6)

a) Input(r = 11) (b) Input r= 16
l G

(e) Output(r =1) (f) Output(r g) Output(r =7) (h) Output(r = 14)
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Motivation e nal Signal Model Compre Sensing Sparse Representation Relation to Deep Learning

Image Rectification with Low-rank and Sparsity
® TILT (Transform Invariant Low-rank Textures) model:
ITor=I"+E
1" Rectified low-rank image
E' Sparse error

7 Image transform operator (nonlinear)

lot

® Rectifying images via optimization:

min |[I%, + \|E||1, st. Tor+VIAT=I+F
10.E, AT
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ntation R

Image Rectification with Low-rank and Sparsity

Algorithm 1 (TILT via ALM)

Input: Initial rectangular window 7 € R™*" in the input image, initial transforma-
tions 7 in a certain group G (affine or projective), A > 0.
While not converged Do

Step 1: normalize the image and compute the Jacobian w.r.t. transformation:

IoT a9 ( Io¢ )
Tore T Ve o (=5
1o 7llr d{(HIOCHr

solve the linearized convex optimization (4):
min  [[1°. + A|E|l;  subject to Tor+VIAT =1°+E,

19,E,A

Step 2

with the initial conditions: Yy = 0, Eo = 0, Ao = 0,10 > 0,p > 1,k
While not converged Do

(Uk, Z, Vi) + svd(I o7 + VIAT, — Ej, + 1, 'Ya),
o

i U8, [SVE
Eji1 SM;.[I o7+ VIAT, — I}y + ;' Yal,
At (VITVD)TIVIT (=T ot + I + Erpr — i ' Vi),
Yisr  Yi+p(Ior+ VIAT = I{) — Brg),
ki1 & Pk,

End While
Step 3: update transformations: T < 7 + Ari1;
End While
Output: I°, E, 7.

[11] Zhang, Z., et al., TILT: Transform Invariant Low-Rank Textures. International Journal of Computer Vision, 2012.
99(1): p. 1-24.

[12] Ren, X. and Z. Lin, Linearized Alternating Direction Method with Adaptive Penalty and Warm Starts for Fast Solving
Transform Invariant Low-Rank Textures. International Journal of Computer Vision, 2013. 104(1): p. 1-14.
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[e]o]ele] elelele]

Image Rectification with Low-rank and Sparsity
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[e]o]ele]e] lelele]

(a) high-rank structures
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epresentation Relation to Deep Learning Applications

Image Rectification with Low-rank and Sparsity

RCHR H— L A B AR SRES. SR TIL Ty ks

min [I°] +&|E[, st Tor+JAT=1"+E

B ETILTRAGECF AR tn I
Y=I"+E+®AT+N; Y=Ior,®d=-J

X 2 A — AT DU+ Gaussian-GammarfSil s AR I K i
BRI EFS AR

Sy poril Ji

I°=4B" 4,  (0.5).B, (O.5) %: T(ab)

E E,  (0.a") a;: T(a,.b,)
AT SAT (0,47 A: T(a,,by)
Y Y (4B"+E+®7,5'I,) p(B)=p"

RIEFIRZE TSRS, 48— M REET ARX

[13] Hu, S., et al., Sparse Bayesian learning for image rectification with transform invariant low-rank textures. Signal
Processing, 2017. 137: p. 298-308.
Lei Yu (School of Electronic and Information Sparse Signal Processing Master Course, 2017 121 / 135



Motivation SNE Model Compre ens arse Representation Relation to Deep Lea

Image Rectification with Low-rank and Sparsity

KRG RE S0 g IER )R

SR - SE MR EOIRAR IR s BN AR e, PR IX LR
B 5 B AR FREEERIRENLTS B, LR =MEEENFRRE T I
WEHLYS GeRe IERfA IR 2 205k I8 fr o PTRLER S, ASCHEH BF-TILT
XTREHLTS G iR R B

— s
e P = =2 —
po e SeSes = =
£Seses] U U VEe===F] 1 - = ADMMethod
:.-:-.:..:-.:#}*If: R = D N LADMAP Method
e e NI I = = = - e
X <
o

2 \

& \

0 0.6 A

3 \

8 w

3 g

@D 04 LSRN

N
&
\
X
02 "}
D
o8
() 02 04 06 3

Corruption Rate
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SRER G —EHT

RS (IR X BF- ADM LADMAP
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Image Rectification with Low-rank and Sparsity

WA e g8
Lo B WREN W
ue

AL R ASCHH 1
BF-TILT/ASBIR Rk 50 5
SliV%, R AT MR B
MR o s, BIEA
IR B,

24/
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Image Rectification with Low-rank and Sparsity
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000000000

ow

B IrsEg
’ [ /.]= [662.49480, 664.67679 ]+/-[1.43392, 1.54252 ]
[e ¢,]=1306.51221, 241.75115 ]+/-[2.83469, 2.60814 ]

0(=[0.00000] +/-[0.00000]

[14] Zhang, Z., A Flexible New Technique for Camera Calibration. IEEE Transactions on pattern analysis and machine
intelligence, 2000. 22(11): p. 1330-1334.
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000000000

LB T NHHRBITRE, TILTH A FHAEbURE
SRR — N RAL S, AR TIL TSR 5 e,

min_ I"HK+§HEHl st. Io(ri,r”)+Jt,Ar’++J{,Ar":I"+E
SR IR SE i —4T LRk

[fiofi] [ 662.49480, 664.67679 ]

/ 677.2436
i 652.7898
g 45
£, 0 ¢] 1386 0 4823
0 f of=| 0 11278 2677
0 0 1 0 0 1

[15] Zhang, Z., et al., Camera calibration with lens distortion from low-rank textures. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011: p. 2321-2328.
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@0000000

6 Applications

m Face Recognition
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sentation R i ea g Applications

@ Assume y belongs to Class 7

Qj1Vj1 + Qj2Vi2 + -+ & nVin;,

005 y
. A Ao,

o A where A; = [vj1,Vi2, "+ ,Vin]

T w0

@ Nevertheless, Class i is the unknown variable we need to solve:
«
a
Sparse representation y = [A1, Az, --- ,Ax] | - | = Ax € R3:640-480,

ak

@ xp=[0-0a]0- o]TgR",

vy

TestingInput Feature Extraction \

Sparse representation encodes membership! J
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al Model C g e ntation i ea g Applications

[e]e] Je]e]ele]e)

ace Recognition

m
0.15 R
. -~ 04
. 0.05
i . | 0

L] eRmXM

-

A=

“o.

057015

Y ® ~ il m + QT«L,QE. + ...+ xi,nE = A;x;
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[e]o]e] Je]ele]e)

Algorithm 1 (Recognition via Sparse Representation)

1: Input: a matrix of training images A € R™*" for k subjects, a linear feature transform R € R%*™  a test image y € R™,
and an error tolerance e.

: Compute features y = Ry and A = RA, and normalize ¢ and columns of A to unit length.

: Solve the convex optimization problem ()):

W

min||z||; subjectto [|§ — Az[2 <e.

: Compute the residuals 7;(y) = ||§ — Ad;(z)||2 fori =1,....k.
: Output: identity(y) = arg min; r;(y).

TS

[10] John Wright, Allen Y. Yang, Arvind Ganesh, Shankar Sastry, and Yi Ma. Robust face recognition via sparse
representation. To appear in PAMI, 2008.
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[e]o]e]e] Jelele)

@ Sparse representation + sparse error

@ Occlusion compensation
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[e]o]e]e]e] le]e)

—e— Algorithm 1
—©— PCA + NN

Racogrifion rate (%)

X
50 \
¥— ICAI+NN .
—w— LNMF + NN \
40 \
\

30k \y

0 5 10 15 20 25 30 35 40 45 50

Percent occluded (%)
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[e]o]e]e]e]e] o)

Ty
100g——=
o l o
80
R _ T0r
S s 60}
ALY 3
. 5 § %
. 3 2
. § al
' I : L4 a0l —e— Aigorithm 1
N = FCA + NN
=5 20 ~¥—ICAI+NN
. . =t LNMF + NN
2 107
"] o- A
v / 0 W 20 30 4 5 6 70 80 9
O T R Percent occluded (%)
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3 Robust EEZL  Total
Ener ust ke al

@ ) ay & Statistics '@}L Variation

_ — - Group sparsity

« Dynamic Group sparsity

Sparse = Graph Sparsity

Overcomplete "

y Wavelet
Sparsity

Sparsity, Structured sparsity, Low-rank

What's next?
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